Дипломная работа Афанасьева Андрея Анатольевича Научный руководитель: к.ф.-м.н., доцент Широков Евгений Вадимович Акустические методы регистрации нейтрино.

Презентация:



Advertisements
Похожие презентации
Исследование акустических эффектов при взаимодействии частиц с веществом Дипломная работа студентки 6 курса Ершовой Ольги Дмитриевны Научный руководитель:
Advertisements

Исследование акустического поля, создаваемого в воде пучком электронов с энергией 50 МэВ ЛОМОНОСОВСКИЕ ЧТЕНИЯ Секция ядерной физики В.Б. Бычков,
Московский Государственный Университет им. М.В.Ломоносова Исследование акустического поля, создаваемого в воде пучком электронов с энергией 50 МэВ Курсовая.
Акустические методы детектирования нейтрино Орлов М.В. Научные руководители: К.ф-м.н. Широков Е.В. Проф. Деденко Л.Г.
Куликовский В.А г МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. ЛОМОНОСОВА ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ОБЩЕЙ ЯДЕРНОЙ ФИЗИКИ ДИПЛОМНАЯ РАБОТА Куликовского.
B = F IΔlIΔl W м = L I 2 / 2 - это электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды. Источником.
1 О возможном влиянии близкой сверхновой на изменения концентрации изотопа 36 Cl в полярном льду. Яблокова А.Е., Блинов А.В.
Линейные ускорители 1 эВ = 1,60·1019 Дж = 1,602·1012 эрг. Наибольший линейный ускоритель работал в гг. в Стэнфорде (США). Он имел длину ~ 3 км.
Калибровка ближнего детектора в эксперименте T2K Володин Евгений Александрович МФТИ(ГУ) ИЯИ РАН Москва
Экспериментальная установка СВД Рис.1 Схема установки С1, С2 – пучковый стинциляционный и Si-годоскоп; С3, С4 – мишенная станция и вершинный Si-детектор.
«Механические волны. Электромагнитные волны». Природа ВОЛНЫ МЕХАНИЧЕСКИЕЭЛЕКТРО-МАГНИТНЫЕ.
Изменение энергетических спектров различных групп ядер в процессе распространения космических лучей в Галактике Калмыков Н.Н. 1, Тимохин А.В. 2 1 НИИЯФ.
,, Закон Био-Савара-Лапласа Теорема о циркуляции Работа поля по перемещению проводника и контура с током Принцип суперпозиции Электромагнитная индукция.
ВКР генерация антистоксового излучения в условиях квазифазового синхронизма. Н. С. Макаров, студент 3 курса СПб ИТМО (ТУ), , Санкт-Петербург, Саблинская,
Сковпень Кирилл Юрьевич Институт ядерной физики им.Г.И.Будкера СО РАН Новосибирск 2007.
6 июля 2010 г. Наблюдение излучения Вавилова- Черенкова и заряженных частиц ШАЛ под большими зенитными углами Р.У. Бейсембаев, Ю.Н. Вавилов, М.И. Вильданова,
Расширенная сессия Научного совета по Программе фундаментальных исследований Президиума РАН Нейтринная физика Исследование космических лучей на аэростатных.
Электромагнитные излучения небесных тел. Электромагнитное излучение небесных тел основной источник информации о космических объектах. Исследуя электромагнитное.
Волна представляет собой колебания, которые при своем распространении не переносят с собой вещество. Волны переносят энергию из одной точки пространства.
11 класс процесс распространения колебаний в пространстве с течением времени.
Транксрипт:

Дипломная работа Афанасьева Андрея Анатольевича Научный руководитель: к.ф.-м.н., доцент Широков Евгений Вадимович Акустические методы регистрации нейтрино

2 Цель работы изучение акустических методов регистрации нейтрино экспериментальное исследование акустического поля оптимизация конфигурации нейтринного телескопа изучение акустических методов регистрации нейтрино экспериментальное исследование акустического поля оптимизация конфигурации нейтринного телескопа Явление возникновения акустического излучения при прохождении заряженных частиц в веществе Детектирование по акустическим сигналам каскадов частиц, инициированных космическими нейтрино в воде

Актуальность работы 3 Потоки нейтрино высоких энергий очень малы. Необходимы большие объемы детекторов. Потоки нейтрино высоких энергий очень малы. Необходимы большие объемы детекторов. Возможности черенковского метода детектирования ограничены энергией E < эВ: Возможности черенковского метода детектирования ограничены энергией E < эВ: длина затухания света ~ 70 мдлина затухания света ~ 70 м объем детектора ~ 1 км 3объем детектора ~ 1 км 3 Акустический метод эффективен для нейтрино с энергией Е > эВ: Акустический метод эффективен для нейтрино с энергией Е > эВ: длина затухания звука в воде ~ 1 км на 10 кГцдлина затухания звука в воде ~ 1 км на 10 кГц возможность достижения объема >> 1 км 3возможность достижения объема >> 1 км 3 Потоки нейтрино высоких энергий очень малы. Необходимы большие объемы детекторов. Потоки нейтрино высоких энергий очень малы. Необходимы большие объемы детекторов. Возможности черенковского метода детектирования ограничены энергией E < эВ: Возможности черенковского метода детектирования ограничены энергией E < эВ: длина затухания света ~ 70 мдлина затухания света ~ 70 м объем детектора ~ 1 км 3объем детектора ~ 1 км 3 Акустический метод эффективен для нейтрино с энергией Е > эВ: Акустический метод эффективен для нейтрино с энергией Е > эВ: длина затухания звука в воде ~ 1 км на 10 кГцдлина затухания звука в воде ~ 1 км на 10 кГц возможность достижения объема >> 1 км 3возможность достижения объема >> 1 км 3

Механизм генерации звука 4 1. Ионизация и возбуждение атомов среды 2. Мгновенное выделение теплоты в ограниченной области пространства 3. Импульсное тепловое расширение 4. Акустическая волна L d

Взаимодействие нейтрино в воде 5 l ν В результате взаимодействия нейтрино с нуклонами ядер образуются электромагнитно-адронные ливни. Для нейтрино с энергией эВ 90% энергии ливня заключено в цилиндре длиной 5 м и диаметром 3 см. В соответствии с терморадиационной моделью, в результате поглощения энергии ливня возникает акустический сигнал, который распространяется в цилиндрической области перпендикулярно оси каскада. Сигнал имеет биполярную форму. Для ливня с энергией10 18 эВ амплитуда давления на расстоянии 1 км составляет несколько мПа, максимум спектра сигнала приходится на кГц. В результате взаимодействия нейтрино с нуклонами ядер образуются электромагнитно-адронные ливни. Для нейтрино с энергией эВ 90% энергии ливня заключено в цилиндре длиной 5 м и диаметром 3 см. В соответствии с терморадиационной моделью, в результате поглощения энергии ливня возникает акустический сигнал, который распространяется в цилиндрической области перпендикулярно оси каскада. Сигнал имеет биполярную форму. Для ливня с энергией10 18 эВ амплитуда давления на расстоянии 1 км составляет несколько мПа, максимум спектра сигнала приходится на кГц. 5 м ливень 3 см

Эксперимент НИИЯФ МГУ

Эксперимент в НИИЯФ МГУ 7 Гидрофон перемещался вдоль линейных трасс с шагом 4.5 мм. Измерены две трассы на расстояниях X = 6 см и X = 4.5 см от оси пучка, каждая трасса содержала 70 точек. 1 м пучок гидрофон Y Z ЭМ ливень 0.5 м Z X 4.5 cм 6 cм6 cм6 cм6 cм

Параметры пучка в эксперименте 8 Энергия электронов 50 и 70 МэВ 50 и 70 МэВ Длительность импульса 7-9 мкс 7-9 мкс Частота повторения импульсов 10 Гц 10 Гц Пространственная форма поперечного сечения пучка Средний ток пучка мА мА Суммарное энерговыделение в импульсе ~ эВ ~ эВ 1 cм1 cм1 cм1 cм 1.5 cм

Результаты эксперимента: акустическое поле Расстояние вдоль трассы, см Расстояние вдоль трассы, см Время, мкс D D C C B B A A AB: сигнал от ближайшей точки излучающей акустической антенны CD: источник – область заглушки, через которую пучок входит в воду Время, мкс Давление, мПа Время, мкс Напряжение, В пучок

Моделирование INFN, Genova

11 Акустическое поле, создаваемое нейтрино E ν = eV

Примеры конфигурации детектора x100x100 m 3 500x500x100 m x1000x100 m x1500x100 m Гидрофонов

13 Типичное событие

14 Результаты моделирования Статистика событий, зарегистрированных при помощи указанной конфигурации детектора за 1 год

15 Результаты моделирования Эффективность регистрации, %Полное число зарегистри- рованных нейтрино Эффективность регистрации, % Полное число зарегистри- рованных нейтрино Диапазон энергий от до эВ Диапазон энергий от до эВ

Результаты работы 16 Изучены основные принципы акустической регистрации нейтрино В эксперименте впервые получена детальная пространственно-временная зависимость акустического поля На языке С++ написана программа для моделирования эффективности регистрации нейтрино акустическим методом. Проведена оптимизация конфигурации акустических модулей нейтринного телескопа.

Проблемы и перспективы Точность Варьирование условий срабатывания гидрофона и детектирования событий Учёт зависимости скорости звука от глубины и солёности – решение численными методами 17

18 Спасибо!