Перпендикулярность плоскостей Перпендикулярность плоскостей.

Презентация:



Advertisements
Похожие презентации
Неперпендикулярные плоскости и пересекаются по прямой МN. В плоскости из точки А проведен перпендикуляр АВ к прямой МN и из той же точки А проведен перпендикуляр.
Advertisements

Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я TTП АС ВМ H-я H-я АС NМ П-я П-я Угол ВMN.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я ОTTП АС ВМ H-я H-я АС NМ П-я П-я Угол.
Д в у г р а н н ы й у г о л. Двугранным углом называется фигура, образованная прямой a и двумя полуплоскостями с общей границей a, не принадлежащими одной.
ПланиметрияСтереометрия Углом на плоскости мы называем фигуру, образованную двумя лучами, исходящими из одной точки. Двугранный угол АВ С АВ С.
Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Повторение: 1.Какая фигура называется двугранным углом? 2.Что называется градусной мерой двугранного угла? 3.Как построить линейный угол двугранного угла?
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Признак перпендикулярности двух плоскостей Выполнила ученица 10 класса Гаспринская Лена.
Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
В прямоугольном параллелепипеде АВСDА 1 В 1 С 1 D 1 диагональ B 1 D составляет с плоскостью основания угол в 45 0, а двугранный угол А 1 В 1 ВD равен 60.
Задачи на нахождение углов между плоскостями. (Вычислительные методы)
Двугранный угол. Перпендикулярность плоскостей.. Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а,
Рассмотрим два полупространства, образованных непараллельными плоскостями Пересечение этих полупространств будем называть двугранным углом Двугранный.
Транксрипт:

Перпендикулярность плоскостей Перпендикулярность плоскостей

Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я TTП АС ВМ H-я H-я АС NМ П-я П-я Угол ВMN – линейный угол двугранного угла ВАСК К M D Повторение.

Построить линейный угол двугранного угла ВАСК. АВСD – четырехугольник, АС - диагональ. А В N П-р Н-я П-я TTП АС ВС H-я H-я АС NС П-я П-я Угол ВСN – линейный угол двугранного угла ВАСК К С D 2 15 Повторение.

Построить линейный угол двугранного угла ВАСК. АВСD – четырехугольник, АС – диагональ. А В N П-р Н-я П-я TTП АС ВS H-я H-я АС NS П-я П-я Угол ВSN – линейный угол двугранного угла ВАСК К С S D Повторение.

Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90 0.

Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты, плоскости стены и потолка.

Признак перпендикулярности двух плоскостей. Признак перпендикулярности двух плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны. АВСD

Следствие Следствие. Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой их этих плоскостей. a