Сравнение бесконечно малых. Определения. Пусть - бесконечно малые при Тогда: –1. Если, то говорят, –что бесконечно малая имеет более –высокий порядок малости,

Презентация:



Advertisements
Похожие презентации
Непрерывность на отрезке Непрерывность на интервале Непрерывность в точке.
Advertisements

Свойства пределов. 1. Ограниченность функции, имеющей предел. –Определение. –Функция называется ограниченной на множестве D, если –Теорема. Пример. Функция.
Лекция 3 Бесконечно малые и бесконечно большие 1.Понятие бесконечно малой функции в окрестности, свойства. 2.Понятие бесконечно большой свойства. 3.Порядок.
Дифференциал функции Определение 1. Пусть приращение функции можно представить в виде где A не зависит от, - бесконечно малая более высокого порядка малости,
Company Logo Односторонние пределы Определение. Число А называется пределом функции f(x) при х x 0 слева, если для любого >0 существует.
Лектор Пахомова Е.Г г. Математический анализ Раздел: Введение в анализ Тема: Предел функции (свойства пределов, бесконечно большие и их свойства,
§10. Ряды аналитических функций. п.1. Числовые ряды. числовой ряд.
{ предел последовательности - число e - оценка – предел функции - теоремы о пределах - признаки существования пределов - замечательные пределы – первый.
Определение дифференциала функции Дифференцируемость функции Правила дифференцирования Инвариантность формы дифференциала Пример Дифференциал в приближенных.
Предел и непрерывность функции одной переменной. Бесконечно малые функции Пусть функция определена в окрестности точки a, кроме, быть может, самой точки.
Бер Л.М. Введение в анализ ГОУ ВПО НИ ТПУ Рег.282 от Предел функции по Гейне Пусть функция у = f(x) определена в окрестности точки x 0. В самой.
Def. f(z) называется дифференцируемой (или моногенной) в точке z 0 g, если при z 0 §4. Дифференцирование функций комплексной переменной. Понятие аналитической.
Лектор Янущик О.В г. Математический анализ Раздел: Введение в анализ Тема: Числовые последовательности (бесконечно большие последовательности и их.
Предел функции Второй замечательный предел Бесконечно малые функции Непрерывность функции в точке Точки разрыва функции Основные теоремы о непрерывных.
«Свойства неравенств» Алгебра - 8. Пример 1: Пусть а – положительное число. Доказать, что.
Лектор Белов В.М г. Математический анализ Раздел: Введение в анализ Тема: Бесконечно большие последовательности Предел функции (определение и свойства.
Определение Две плоскости называются параллельными, если они не пересекаются. α α β, тогда αβ β.
Интегральное исчисление функций одной переменной..
Интегральное исчисление Неопределенный интеграл. Определение 1. Функция называется первообразной для в, если определена в и Пример.
Векторная алгебра Умножение векторов. Скалярное произведение Определение. Скалярным произведением двух векторов называется число, равное произведению.
Транксрипт:

Сравнение бесконечно малых. Определения. Пусть - бесконечно малые при Тогда: –1. Если, то говорят, –что бесконечно малая имеет более –высокий порядок малости, чем –2. Если, то говорят, –что бесконечно малая имеет –более высокий порядок малости, чем –3. Если –, то говорят, что бесконечно малые – имеют одинаковый порядок малости. 4. Если,то бесконечно малые называются эквивалентными. Обозначение:

Сравнение бесконечно малых. Свойства эквивалентных бесконечно малых. –1. –2. –3. –4. Доказательство свойства 1: Доказательство свойства 4: Необходимость: Д.з. Доказать достаточность.

Сравнение бесконечно малых. Таблица эквивалентных бесконечно малых при.

Сравнение бесконечно малых. Примеры