Арифметическая прогрессия.
Характеристическое свойство арифметической прогрессии Пусть дана арифметическая прогрессия a 1, a 2, a 3,…, a n, …. Рассмотрим три её члена, следующие друг за другом: a n-1, a n, a n+1. Известно, что a n – d = a n-1, a n + d = a n+1. Сложив эти равенства, получим: Это значит, что каждый член арифметической прогрессии (кроме первого и последнего) равен среднему арифметическому предшествующего и последующего членов.
Задачи из вариантов ГИА 1) В арифметической прогрессии a 1 = 3, d = - 1,5. Найдите наименьшее значение n, для которого выполняется неравенство a n > ) Укажите количество положительных членов арифметической прогрессии 84,1; 78,3; …. 3) Арифметическая прогрессия задана формулой n- го члена a n = 4n + 1. Найти сумму членов арифметической прогрессии с двадцать пятого по пятидесятый включительно.