А 1 А 1 В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны, найдите угол между прямыми КМ и ТЕ, где точка К – середина ребра АА 1,

Презентация:



Advertisements
Похожие презентации
А1А1 В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны, найдите угол между прямыми КМ и ТЕ, где точка К – середина ребра АА 1, точка.
Advertisements

1 1 1 А В С 1 С 1 А 1 А 112 В 1 В 1 С В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны 1, найдите угол между плоскостями AСВ 1 и.
T AB C M 1 K O1O1O1O1 В правильной четырехугольной пирамиде АВСMT со стороной основания а=4 и высотой ТО 1 = h =1. Найдите косинус угла между прямыми ОТ.
Взаимное расположение прямых в пространстве. Угол между скрещивающимися прямыми. Стереометрия.
Р ЕШЕНИЕ ЗАДАНИЙ С 2. В ЕДИНИЧНОМ КУБЕ АВСDА 1 В 1 С 1 D 1 НАЙДИТЕ УГОЛ МЕЖДУ ПРЯМЫМИ АВ 1 И ВС 1. Решение: Введем систему координат, считая началом координат.
2006 г вар.1 В сферу вписана правильная треугольная призма АВСА 1 В 1 С 1, объем которой равен 4,5. Прямая В 1 А образует с плоскостью ВСС 1 угол 45º.
Задача. Основание прямой четырехугольной призмы прямоугольник АВСD, в котором АВ=5, АD=33. Найдите тангенс угла между плоскостью грани АА 1 DD 1 призмы.
Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D АВ С А 1 А 1 D1D1 С 1 С 1 В 1 В 1 Если в кубе не дано.
( ; ; 0) 2 1 (0;0;0) В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, точка D середина ребра A 1 B 1. Найдите косинус угла между.
В правильной четырехугольной призме через диагональ основания проведено сечение параллельно диагонали призмы. Найдите площадь сечения, если сторона основания.
A a II расстоянием между скрещивающимися прямыми. Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно.
Выполнила: ученица 11 «а» класса МОУ-СОШ 4 Филимонова Лена. Преподаватель: Александрова Тамара Владимировна.
Сторона основания правильной треугольной призмы ABCA 1 B 1 C 1 равна 8. Высота этой призмы равна 6. Найти угол между прямыми CA 1 и АВ 1. C B1B1 A 8 60.
2004 г Вар.1 В шар радиусом 0,511 вписана правильная треугольная призма АВСА 1 В 1 С 1. Прямая В 1 А образует с плоскостью ВСС 1 угол 45º. Найдите объем.
В С А А1А1 С1С1 В1В1 6 6 В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 6, найдите расстояние между прямыми АА 1 и ВС 1. 6 К Рассмотрим.
A С1С1С1С1 A1A1A1A1 B1B1B1B1 2 B 2 Чтобы найти высоту A 1 K, выразим два раза площадь равнобедренного треугольника BA 1 C 1. K 55С 2H В правильной треугольной.
А В С D Решите устно задачу.. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней.
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, точки G и H – середины ребер соответственно А 1 В 1 и В 1 С.
Решение задач С2 Харитоненко Н.В. МБОУ СОШ 3 с.Александров Гай.
Транксрипт:

А1А1 В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны, найдите угол между прямыми КМ и ТЕ, где точка К – середина ребра АА 1, точка М – середина ребра АВ, точка Т – середина ребра А 1 В 1, а точка Е – средина ребра СС 1. А В С С1С1 В1В1 1 Через точку Т проведём прямую TFKM 1 М К Т Е F Угол между прямыми КМ и ТЕ – это угол α TF и ТЕ между прямыми TF и ТЕ Проведём отрезок В Проведём отрезок А 1 В (сделайте заключение о взаимном расположении КМ, В, TF) (сделайте заключение о взаимном расположении КМ, А 1 В, TF) Пусть ребро призмы 1.

А1А1 А В С С1С1 В1В М К Т Е F ) Найдите А 1 В из АА 1 В 2) Сделайте заключение о длине отрезка TF 3) Найдите C 1 T из TC 1 В 1 4) Найдите TE из TC 1 E 5) В TEF примените теорему косинусов и найдите cosα найдите cosα 6) Выразите α через arccos