Тема : « Генетика. Законы Менделя » 10 класс. Генетика относительно молодая наука. Официальной датой ее рождения считается 1900 г., когда Г. де Фриз в.

Презентация:



Advertisements
Похожие презентации
Презентация на тему: 1 и 2 закон Менделя Порхун Александры Группа 306 Сд 2013 год.
Advertisements

Тема: «1 и 2 законы Менделя» Задачи: 1.Изучение законов Менделя и их цитологических основ. 2.Знакомство с основными понятиями генетики.
Тема: «1 и 2 законы Менделя» Задачи: 1.Изучение законов Менделя и их цитологических основ. 2.Знакомство с основными понятиями генетики. Павленко С.Е На.
I ЗАКОН МЕНДЕЛЯ То, что мы знаем - ограничено, то чего мы не знаем - бесконечно. (П. Лаплас)
Дигибридное скрещивание. 3 закон Менделя. Задачи: Вывести 3 закон Менделя; научиться решать задачи на 3 закон Менделя. ОСНОВЫ ГЕНЕТИКИ.
Моногибридное скрещивание.. 1.Генетика? 2.Наследственность? 3.Изменчивость? 4.Генотип? 5.Фенотип? 6.Ген? 1.Доминантный признак? 2.Доминантный ген? 3.Рецессивный.
На уроке мы должны: Познакомиться с гибридологическим методом как основным методом генетики Изучить закономерности наследования признаков, установленные.
Основные закономерности наследственности и изменчивости Законы Г. Менделя Теория постигается через практику.
На уроке мы должны: Познакомиться с гибридологическим методом как основным методом генетики Изучить закономерности наследования признаков, установленные.
Генетика. Законы Г. Менделя Почему мы похожи на своих родителей? автор: Широченко Н. Н. Учитель биологии ГОУ ЦО 1456 Москва 2010.
Моногибридное скрещивание. Раздел класс МОУ СОШ 11 Дельмухаметова Л.И.
Лекция 3. ЗАКОНОМЕРНОСТИ НАСЛЕДСТВЕННОСТИ 1. Этапы развития генетики. 2. гибридологический метод. 3. Моногибридное скрещивание. 4. Промежуточное наследование.
ОСНОВЫ ГЕНЕТИКИ. ИСТОРИЯ РАЗВИТИЯ ГЕНЕТИКИ Грегор Иоганн Мендель (20 июля июня 1884) С древних времен люди на интуитивном уровне подозревали что.
Генетика наука о закономерностях наследственности и изменчивости организмов Наследственность - свойство организмов передавать свои признаки и свойства.
Тема урока: «Моногибридное скрещивание». Тема урока: «Моногибридное скрещивание».
Генетика История развития генетики. Основные понятия. МАОУ лицей 8 им. Н.Н. Рукавишникова, г.Томск Батракова Ксения Андреевна, учитель биологии.
I закон Менделя Закон доминирования: «При скрещивании двух гомозиготных организмов, отличающихся по альтернативным вариантам одного и того же признака,
Подготовил презентацию обучающийся МБОУ СОШ 2 10 класса Торкин Дмитрий.
1. Изучить закон независимого наследования Менделя, углубить знания основных понятий генетики. 2. Развивать умение пользоваться генетической символикой;
9 класс Изучить основы генетических экспериментов Г. Менделя и сформулировать закон единообразия гибридов первого поколения.
Транксрипт:

Тема : « Генетика. Законы Менделя » 10 класс

Генетика относительно молодая наука. Официальной датой ее рождения считается 1900 г., когда Г. де Фриз в Голландии, К.Корренс в Германии и Э.Чермак в Австрии независимо друг от друга "переоткрыли" законы наследования признаков, установленные Г. Менделем еще в 1865 году. Генетика наука о наследственности и изменчивости. Под наследственностью понимают свойство организмов передавать признаки по наследству Генетика Материальной основой наследственности, связывающей поколения, являются клетки гаметы (при половом размножении) и соматические (при бесполом). Но клетки несут в себе не признаки и свойства будущих организмов, а лишь задатки, дающие возможность развития этих признаков и свойств. Этими задатками являются гены. Наличие задатка еще не означает обязательного появления признака, поскольку развитие любого признака зависит как от присутствия других генов, так и от условий среды. То есть, формирование признаков происходит в ходе индивидуального развития особей.

Совокупность всех признаков организма называют фенотипом. Совокупность всех генов организма называют генотипом. Под изменчивостью понимают свойство организмов приобретать новые признаки под воздействием различных факторов. Изменчивость заключается в изменении наследственных задатков, то есть генов. Изучением причин и форм изменчивости также занимается генетика. Изменчивость противоположна наследственности. Если наследственность стремится закрепить признаки и свойства организмов, то изменчивость обеспечивает появление новых признаков и свойств. Вмести с тем, наследственность и изменчивость тесно взаимосвязаны. Благодаря изменчивости организмы приспосабливаются к изменяющимся условиям окружающей среды, а благодаря наследственности эти изменения закрепляются. Генетика

Гибридологический метод Гибридологический метод - система скрещиваний, позволяющая проследить закономерности наследования и изменения признаков в ряду поколений. Метод разработан Г.Менделем. Генетическая символика: Для записи результатов скрещиваний в генетике используются специальная символика, предложенная Г.Менделем: Р родители; F потомство, (F 1 гибриды первого поколения, F 2 гибриды второго поколения); х значок скрещивания; мужская особь; женская особь A, a, B, b, C, c буквами латинского алфавита обозначаются отдельно взятые наследственные признаки.

Моногибридное скрещивание Опыты Менделя были тщательно продуманы. Свои исследования он начал с изучения закономерностей наследования всего лишь одной пары альтернативных признаков. Классическим примером моногибридного скрещивания является скрещивание сортов гороха с желтыми и зелеными семенами. При скрещивании растения с желтыми и зелеными семенами, все потомки имели желтые семена. Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков.

Мендель провел скрещивание : Сорт гороха с желтыми семенами Сорт гороха с зелеными семенами P: F1:F1: В первом поколении были только растения с желтыми семенами!

Первый закон Менделя Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый рецессивным. Само же явление преобладания у гибридов признака одного из родителей Г. Мендель назвал доминированием. Позже выявленная закономерность была названа законом единообразия гибридов первого поколения, или законом доминирования. Это первый закон Менделя: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F 1 ) окажется единообразным и будет нести признак одного из родителей.

При скрещивании гибридов первого поколения друг с другом, Мендель обнаружил, что в потомстве появляется расщепление : F1:F1: F2:F2: 3/43/4 1/41/4 Три четверти семян имели доминантное проявление признака, а четверть семян – рецессивное

Второй закон Менделя Во втором поколении количество гибридов, несущих доминантный признак, приблизительно в 3 раза больше, чем гибридов, несущих рецессивный признак; Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть рецессивный, называют расщеплением. Таким образом, на основе скрещивания гибридов первого поколения и анализа второго был сформулирован второй закон Менделя: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении: 3/4 имеют доминантный признак, 1/4 - рецессивный.

Гипотеза чистоты гамет Одна третья желтых семян дали в F 3 растения только с желтыми семенами, у двух третьих – расщепление в соотношении 3:1. Из зеленых семян выросли растения только с зелеными семенами. Для объяснения явления доминирования и расщепления гибридов второго поколения Мендель предложил гипотезу чистоты гамет. Он предположил, что развитие признака определяется соответствующим ему наследственным фактором. Один наследственный фактор гибриды получают от отца, другой от матери. У гибридов F 1 проявляется лишь один из факторов доминантный.

Наследственные задатки (гены) Мендель предложил обозначать большими буквами латинского алфавита, например, доминантный большой А, рецессивный маленькой а. Каждый организм один задаток (ген) получает от материнского организма, а другой от отцовского, следовательно, у каждого организма два наследственных задатка, один родитель имеет АА, другой - а. В каждую гамету попадает только один наследственный фактор, у одного родителя все гаметы несут А, у другого – а. Гибриды F 1 получают оба фактора и их генотип Аа. Гипотеза чистоты гамет

Гибриды F 1, образуют два типа гамет – 50% с фактором А, 50% - с фактором а. Наследственные факторы не смешиваются, а передаются в неизменном виде из поколения в поколение с половыми клетками. Гаметы несут только один наследственный фактор из пары, то есть они "чисты" (не содержат второго наследственного фактора). Итак, гипотеза чистоты гамет гласит: гаметы "чисты", содержат только один наследственный признак из пары.

Генетическая схема скрещивания Английский генетик Р.Пеннет предложил проводить запись в виде решетки, которую так и назвали решетка Пеннета. По вертикали указываются женские гаметы, по горизонтали мужские. В клетки решетки вписываются генотипы зигот, образовавшихся при слиянии гамет. Ответ: F 1 – по генотипу 100% Аа, по фенотипу – 100% желтые; F 2 – по генотипу ¼ АА + ½ Аа + ¼ а; по фенотипу ¾ желтые, ¼ - зеленые

Второй закон Менделя Поскольку в своих опытах Г. Мендель использовал растения, относящиеся к разным сортам, аллельные гены этих растений одинаковы. Организмы, имеющие одинаковые аллели одного гена, называются гомозиготными. Они могут быть гомозиготными по доминантным (АА) или по рецессивным генам (а). Организмы, имеющие разные аллели одного гена, называются гетерозиготными (Аа). Во времена Менделя строение и развитие половых клеток еще не было изучено. Поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Дигибридное скрещивание Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г.Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Дигибридным называют скрещивание двух организмов, отличающихся друг от друга по двум парам альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые).

Дигибридное скрещивание Желтая окраска (А) и гладкая форма (В) семян доминантные признаки, зеленая окраска (а) и морщинистая форма (в) рецессивные признаки. Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. Р ААВВ х аbb F 1 100% AaBb

Дигибридное скрещивание При самоопылении гибридов (F 1 ) в F 2 были получены результаты: 9/16 растений имели гладкие желтые семена; 3/16 были желтыми и морщинистыми; 3/16 были зелеными и гладкими; 1/16 растений морщинистые семена зеленого цвета. Он обратил внимание на то, что расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании: на каждые 12 желтых – 4 зеленых (3:1); на 12 гладких – 4 морщинистых (3:1).

Дигибридное скрещивание Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков – желтые и зеленые семена и дают во втором поколении два фенотипа (2) в соотношении 3+1, то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2 ) в соотношении (3+1) 2. Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: (2 3 ) восемь фенотипов в соотношении (3+1) 3.

Дигибридное скрещивание Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков – желтые и зеленые семена и дают во втором поколении два фенотипа (2) в соотношении 3+1, то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2 ) в соотношении (3+1) 2. Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: (2 3 ) восемь фенотипов в соотношении (3+1) 3.

Дигибридное скрещивание Проведенное исследование позволило сформулировать закон независимого комбинирования генов (третий закон Менделя): при скрещивании двух гетерозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга в соотношении 3:1 и комбинируются во всех возможных сочетаниях.

Анализирующее скрещивание Для того, чтобы определить генотип особи, обладающей доминантными признаками, проводят анализирующее скрещивание скрещивают с особью, гомозиготной по рецессивным признакам. Если исследуемая особь гомозиготна (АА), то потомство от такого скрещивания будет иметь фиолетовые цветки и генотип Аа: АА х а; F 1 100% Аа. Если исследуемая особь гетерозиготна (Аа), то она образует два типа гамет и 50% потомства будет иметь желтые семена и генотип Аа, а 50% зеленые семена и генотип а: Аа х а; F 1 50% Аа, 50% а.

Неполное доминирование Явление доминирования не абсолютно. При скрещивании гомозиготных красноплодных и белоплодных сортов земляники, все первое поколение гибридов получается розовоплодным. При скрещивании гибридов получаем расщепление в соотношении: 1/4 красноплодные (АА); 1/2 розовоплодные (Аа); 1/4 белоплодные (а). Характерно то, что при неполном доминировании расщепление по генотипу соответствует расщеплению по фенотипу, так как гетерозиготы фенотипически отличаются от гомозигот.

1.Генетика? 2.Наследственность? 3.Изменчивость? 4.Генотип? 5.Фенотип? 6. Доминантный признак? 7. Доминантный ген? 8. Рецессивный признак? 9. Рецессивный ген? 10. Гомозиготная особь? 11. Гетерозиготная особь? 12. Гибридологический метод? 13. Моногибридное скрещивание? 14. Дигибридное скрещивание? 15. Аллельные гены? Основные понятия и определения темы: 16. Первый закон Менделя 17. Второй закон Менделя 18. Третий закон Менделя 19. Анализирующее скрещивание 20. Неполное доминирование

При составлении презентации использовались материалы Пименова А.В. и материалы с интернет - сайтов