Понятие Многогранника. Призма
А1А1 А2А2 АnАn B1B1 B2B2 nBnnBn B3B3 А3А3 n Многогранник, составленный из двух равных многоугольников А 1 А 2 …А n и В 1 В 2 …В n, расположенных в параллельных плоскостях, и n параллелограммов, называется призмой. n-угольная призма. Многоугольники основания призмы А 1 А 2 …А n и В 1 В 2 …В n – основания призмы. боковые грани призмы Параллелограммы А 1 В 1 В 2 В 2, А 2 В 2 В 3 А 3 и т.д. боковые грани призмы Призма
боковые ребра призмы Отрезки А 1 В 1, А 2 В 2 и т.д. - боковые ребра призмы высотой призмы Перпендикуляр, проведенный из какой- нибудь точки одного основания к плоскости другого основания, называется высотой призмы. Призма А1А1 А2А2 АnАn B1B1 B2B2 nBnnBn B3B3 А3А3
прямой, наклонной Если боковые ребра перпендикулярны к основаниям, то призма называется прямой, в противном случае наклонной. Высота прямой призмы равна ее боковому ребру.
правильной, Прямая призма называется правильной, если ее основания - правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники.
В С А1А1 D1D1 С1С1 В1В1 D А BDD 1 B 1 – диагональное сечение призмы