1.Найдите площадь квадрата со стороной 3 см; 1,2 мм; 5\7 м;. 2. Найдите площадь прямоугольного треугольника с катетами 3 см и 4 см; 2,2 м и 5 см;

Презентация:



Advertisements
Похожие презентации
Урок геометрии в 8 классе Провела: Занкина О. И. учитель математики Папулевской оош Ичалковского района.
Advertisements

Выполнил ученик 10 «А»класса средней школы с.Яникой Габаев М г.
«Древнекитайское и древнеиндийское доказательства. Доказательство Аннариция» Брянский городской лицей 1 им. А.С.Пушкина. Проект «Теорема Пифагора» Брянск.
Какой треугольник называется прямоугольным? Как называются стороны такого треугольника? Где находится гипотенуза? Какие свойства прямоугольного треугольника.
Способы доказательства теорема Пифагора Подготовила презентацию Ученица 8 «А» класса МБОУ СОШ 19 Авакян Нелля Проверила: Куликова Е.И.
Теорема Пифагора Автор работы: Закируллина Альбина Руководитель: Гайнуллина Луиза Мирсаидовна.
Теорема Пифагора 8 класс.
Теорема Пифагора. Геометрия, 8 класс.. Задачи. 1.Найти площадь МРК.2. Доказать, что KMNP – квадрат. М Р К 12 см 10 см 60° A BC D K M N P.
Теорема Пифагора. Треугольники имеющие стороны: 3, 4, 5 6, 8, 10 5, 12, 13 прямоугольные.
Теорема Пифагора Подготовили ученицы 10 «А» класса МБОУ СОШ 1 Федотова С. Угай Ю. Учитель Глушкова Ирина Альбертовна.
Решение задач на применение теоремы Пифагора Автор: Рычкова Валентина Геннадьевна, учитель математики учитель математики СОУ «Свердловская СОШ» СОУ «Свердловская.
Теорема Пифагора 8 класс (ок. 580 – ок. 500 г. до н.э.) Пребудет вечной истина, как скоро Ее познает слабый человек! И ныне теорема Пифагора Верна, как.
Тема: «ТЕОРЕМА ПИФАГОРА» (8 класс). 1.Какой треугольник на рисунке 1? 2.Назовите катеты и гипотенузу. 3.Какой треугольник на рисунке 2? Чем он интересен?
простота красота значимость . Существует около 400 различных доказательств этой теоремы геометрических алгебраических механических и т.д.
Сумма углов треугольника. Внешний угол треугольника Было бы легче остановить Солнце, легче было сдвинуть Землю, чем уменьшить сумму углов в треугольнике…
© Yanshina 2006 «…Геометрия владеет двумя сокровищами: Одно из них - это теорема Пифагора, и другое - деление отрезков в среднем и крайнем отношении…
Демонстрационный материал к уроку геометрии в 8 классе по теме : Теорема Пифагора.
Теорема Пифагора «Решение задач». Заповеди Пифагора.
Урок по теме «Теорема Пифагора» c² = a² + b² b с а.
Теорема Пифагора. Устная работа В 30 о о С А D РЕШЕНИЕ: Найдите площадь АВСD.
Транксрипт:

1. Найдите площадь квадрата со стороной 3 см; 1,2 мм; 5\7 м;. 2. Найдите площадь прямоугольного треугольника с катетами 3 см и 4 см; 2,2 м и 5 см;

И. Дырченко Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем: Катеты в квадрат возводим, Сумму степеней находим И таким простым путем К результату мы придем.

Биография Пифагора Пифагор родился около 570 г. до н.э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери Пифагора не известно. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности. Среди учителей юного Пифагора называют имена старца Гермодаманта и Ферекида Сиросского (хотя и нет твердой уверенности в том, что именно Гермодамант и Ферекид были первыми учителями Пифагора).

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов c 2 =a 2 +b 2 c a b

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА Пусть Т прямоугольный треугольник с катетами а, b и гипотенузой с. Докажем, что с 2 =а 2 +Ь 2 Построим квадрата со стороной а+Ь. Квадрат Q со стороной а+Ь слагается из квадрата Р со стороной с и четырех треугольников, равных треугольнику Т. Поэтому для их площадей выполняется равенство S(Q)=S(P)+4S(T). Так как S(Q)=(a+b) 2 ; S(P)=c 2 и S(T)=1/2(ab), то (a+b) 2 =c 2 +4*(1/2)ab или a 2 +b 2 +2ab=c 2 +2ab и с 2 =а 2 +Ь 2. c a b b a b a b a c c c

Простейшее доказательство теоремы получается в простейшем случае рассматривания равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедится в справедливости теоремы. Например, для ABC : квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, по два. Теорема доказана.

A B C «Пифагоровы штаны во все стороны равны. Чтобы это доказать, нужно снять и показать», -так поется в одной шутливой песенке. Эти «штаны» показаны на рисунке, где на каждой стороне прямоугольного треугольника АВС во внешнюю сторону построены квадраты. А сам рисунок появился в знаменитой первой книге трактата Евклида «Начала»и был положен ее автором в основу доказательства теоремы Пифагора. В англоязычных странах ее называют ветряной мельницей, павлиньим хвостом и креслом невесты.

Задача индийского ученого Бхаскара Акариа, 1114 г. На берегу ручья, ширина которого 4 фута, рос тополь. Порыв ветра сломил его на высоте в 3 фута от земли так, что верхний конец его коснулся другого берега ручья (ствол направлен перпендикулярно течению). Определить высоту тополя. Теорема Пифагора всегда имела широкое применение при решении самых разнообразных геометрических задач.

Задача из старинного китайского трактата. В середине квадратного озера со стороной 10 футов растет тростник, выходящий из воды на 1 фут. Если нагнуть тростник, вершина достигнет берега. Какова глубина озера? Дано: BC = 5 футов, BK = 1 фут. Найти: AB. B C K A

." У египтян была известна задача о лотосе. "На глубине 12 футов растет лотос с 13-футовым стеблем. Определите, на какое расстояние цветок может отклониться от вертикали, проходящей через точку крепления стебля ко дну

1 Пифагор родился на острове: а).Родос б)Крит в)Мадагаскар г) Самос Ответ: г 2. Теорема Пифагора гласит: a)В треугольнике квадрат гипотенузы равен квадрату катетов. б)В прямоугольном треугольнике гипотенуза равна сумме катетов. в)В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. г)В прямоугольнике квадрат гипотенузы равен сумме квадратов катетов. 4. Выберите тройку пифагоровых чисел: а)2, 3 и 5 б)4, 5 и 8 в)5, 12 и 13 г)9, 11 и Выберите верное равенство для данного треугольника: а)a 2 + c 2 = b 2 б)a 2 + b 2 = c в)b 2 + c 2 = a 2 г)a 2 + b 2 = c 2 Ответ: г Ответ: в ТЕСТ

Ответы 1. Г 2. В 3. Г 4.В