Найти координаты точек А, В, С и векторов ОА, ОВ, ОС A(-1; 3;-6) B(-2;-3; 4) y xz I I I I I I I I I I I I I I I I I I I I I I I I I I I I I j k iO I I.

Презентация:



Advertisements
Похожие презентации
-2f{ } 0,5e{ } -c{ } -3d{ } -2b{ } 3a{ } Найти координаты векторов. Вводите ответы в текстовые поля, не делая пробелов f(0; 5;- }; d{-2;-3; }; b{-2; 0;1,5};
Advertisements

-2f{ } 0,5e{ } -c{ } -3d{ } -2b{ } 3a{ } Найти координаты векторов. f 5;- }; d{-3; }; b{-2;1,5}; a {2; 4}; c {2;-5}; e {2;-3};
Повторение К (2; 0; -4) z у х хуz Повторение Как расположена точка относительно прямоугольной системы координат, если: одна её координата равна нулю;
Домашнее задание: 428(в,г,д,е), 429, 430, 431(а,г), 436, 437, 438. п. 49.
УРОК 17 ПРОСТЕЙШИЕ ЗАДАЧИ В КООРДИНАТАХ Точка А лежит на положительной полуоси Ох, а точка В – на положительной полуоси ОУ. Найдите координаты.
Прямоугольная система координат в пространстве. Геометрия 11 класс.
Урок геометрии в 9 классе Учитель Серегина Т.Н. МОБУ СОШ с.В-Авзян.
x ось абсцисс z ось аппликат Оси координат - Ox, Oy, Oz Начало координат - O точка O Координатные плоскости Oxy, Oyz, Ozx Система координатOxyz y ось.
Векторы в пространстве Понятие вектора в пространстве Сложение и вычитание векторов Умножение вектора на число Компланарные векторы.
401 (а) Рассмотрим точку А (2; -3; 5) х у z A 1) A 1 : Oxy A1A1 A 1 (2; -3; 0) A2A2 2) A 2 : Oxz A 2 (2; 0; 5) 3) A 3 : Oyz A3A3 A 3 (0; -3;
Компланарные векторы. Правило параллелепипеда. компланарными Векторы называются компланарными, если при откладывании их от одной и той же точки они будут.
Проверка домашнего задания Проверка домашнего задания К.
Выполнила: Алтын-Баш Наталия.. Длиной или модулем вектора Длиной или модулем вектора называется длина отрезка АВ направленным отрезком или вектором Отрезок,
Учитель школы 350 Шевелёва М.С. векторы. Содержание Равенство векторов Откладывание вектора от точки Сложение векторов.
О p и координатные координатные векторы векторыij p{ x; y} координаты координаты вектора вектора p {4; 3} F 1i=1; j=1 p = xi + yj разложение вектора по.
Сеть творческих учителей. Сообщество учителей математики. Творческая группа Мастерская. Мультимедийные презентации для уроков математики. Геометрия 9 класс.
Прямоугольная система координат в пространстве. Прямые с выбранными на них направлениями называются осями координат, а их общая точка – началом координат.
компланарными Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости. c компланарными Другими.
Понятие вектора в пространстве Основная цель – сформировать понятие вектора в пространстве Дома: теория (п. 38 – 39) 320(б), 321(б), 326.
Шипунова Л. Г. ГБОУ ШКОЛА 763 г. Москвы Векторы в пространстве.
Транксрипт:

Найти координаты точек А, В, С и векторов ОА, ОВ, ОС A(-1; 3;-6) B(-2;-3; 4) y xz I I I I I I I I I I I I I I I I I I I I I I I I I I I I I j k iO I I I В А I I I I I С OB{-2;-3; 4} C( 3;-2; 6) OA{-1; 3;-6} OC{ 3;-2; 6}

Из АОС, = AО + ОС Найдите координаты векторов y x zk i jА В С OA=4 NAC CB,AB,MN,NP,BM,OM,OP.OB=9 OC=2 M, N P – середины отрезков АС, ОС и ВС = –ОA + ОС = –4 i + 2 k AC, AC {-4; 0 ; 2} М РO 4 92

-2f{ } 0,5e{ } -c{ } -3d{ } -2b{ } 3a{ } Найти координаты векторов. Вводите ответы в текстовые поля, не делая пробелов f(0; 5;- }; d{-2;-3; }; b{-2; 0;1,5}; a {2; 4;-1}; c {2;-5;0}; e {2;-3;8};

–i{ } –k{ } -d{ } –j{ } -b{ } -a{ } d{0; 0; 0}; b{-2; 0;-1}; a {2; 4;-5}; Найти координаты векторов, противоположных данным. Вводите ответы в текстовые поля, не делая пробелов

a +c { } a - c{ } b+d{ } c +e{ } f - d{ } b - d{ } Найти координаты векторов. Вводите ответы в текстовые поля, не делая пробелов d{-2;-3;-1}; b{-2; 0; 4}; a {2; 4; 3}; c {2;-5; 4}; e {2;-3;-9}; f(0; 5;-3}; c {3; 2;-3}; d{-2;-3;7}; d{-2;-3;-4}; b{-2; 0;-1}; c {3; 2;-9}; a {2; 4;0};

коллинеарныйййми, Два ненулевых вектора называются коллинеарныйййми, если они лежат на одной прямой или на параллельных прямых. ab c ab ca cb Коллинеарные, сонаправленные векторы oaocob Нулевой вектор Нулевой вектор условимся считать сонаправленным с любым вектором.

коллинеарныйййми, Два ненулевых вектора называются коллинеарныйййми, если они лежат на одной прямой или на параллельных прямых.a b c ba Коллинеарные, противоположно направленные векторы противоположно направленные векторы bc

c {0; 2; }; f{ ;-0,5;3} * * -120 * Замените так, чтобы векторы были коллинеарныййй.* a {2; ; 6}; b{4;-3; } * 12 -1,5 -1,5 Коллинеарны ли векторы b{6;12;16} a {3; 6; 8}; === ab = 2 ab =12 или Векторы и коллинеарныййй.ab

компланарныейми Векторы называются компланарныейми, если при откладывании их от одной и той же точки они будут лежать в одной плоскости. c компланарныейми Другими словами, векторы называются компланарныейми, если имеются равные им векторы, лежащие в одной плоскости. a c b b

Любые два вектора компланарныей. Три вектора, среди которых имеются два коллинеарныйййх, также компланарныей. Если вектор можно разложить по векторам и, т.е. представить в виде и, т.е. представить в виде где x и y – некоторые числа, то векторы, и компланарныей.ca b c = xa + yb abc Признак компланарности

Компланарны ли векторы и a {2; 6;-3}; b{6;18;-9} 13 === Векторы и коллинеарныййй.ab i Векторы,, компланарныей.abi Компланарны ли векторы и a {2; 4; 3}; b{6;11;-9}; MM Нулевой вектор коллинеарен любому вектору. Значит, эти векторы компланарныей.0=

x z yО A(x1; y1; z1)A(x1; y1; z1)A(x1; y1; z1)A(x1; y1; z1) B(x2; y2; z2)B(x2; y2; z2)B(x2; y2; z2)B(x2; y2; z2) Из АОB, = AО + ОB AB = –ОA + ОB –OA{-x 1 ; -y 1 ; -z 1 } OB{x 2 ; y 2 ; z 2 } + АВ Выразим координаты вектора АВ через координаты его начала А и конца В. AB {x 2 -x 1 ; y 2 -y 1 ; z 2 -z 1 } OB – OA Каждая координата вектора равна разности соответствующих координат его конца и начала. OA{x 1 ; y 1 ; z 1 } OA{x 1 ; y 1 ; z 1 } OB{x 2 ; y 2 ; z 2 } *

AB{2;-1;-8}BA (3;5;7), (5;4;-1), P C (2;-1;0), (4;-4;2), D (-3;-4;0), R T (-4;0;-4), (0;5;-1), N (3;2;-3), B(5;4;-1) A(3;5;7) – ON{3; 2;-3} Радиус-вектор PC{2;-3; 2} C(4;-4;2) P(2;-1;0) – TR{-4;-5;-3} T(0; 5;-1) R(-4;0;-4) – OD{-3;-4; 0} Радиус-вектор O (0;0;0), O AB ONPC TR OD

Найдите координаты векторовRM{-4;0;2} R(2; 7;1) M(-2;7;3) – R(2;7;1); M(-2;7;3); RM P(-5;1;4); D(-5;7;-2); PD PD{ 0; 6;-6} P(-5; 1;4) D(-5;7;-2) – R(-3;0;-2); N(0;5;-3); RN A(0;3;4); B(-4;0;-3); BA R(-7;7;-6); T(-2;-7;0); RT A(-2;7;5); B(-2;0;-3); AB RN{3; 5;-1} R(-3;0;-2) N(0; 5;-3) – BA{4; 3;7} B(-4;0;-3) A(0; 3;4) – AB{0;-7;-8} A(-2;7;5) B(-2;0;-3) – RT{5;-14;6} R(-7; 7;-6) T(-2;-7;0) –

{ } Найти координаты векторов. Вводите ответы в текстовые поля, не делая пробелов R(2;7;1); M(-2;7;3); RM P(-5;1;4); D(-5;7;-2); PD R(-3;0;-2); N(0;5;-3); RN A(0;3;4); B(-4;0;-3); BA R(-7;7;-6); T(-2;-7;0); RT A(-2;7;5); B(-2;0;-3); AB { }

B Планиметрия AO C

C (x;y;z) A(x1;y1;z1)A(x1;y1;z1)A(x1;y1;z1)A(x1;y1;z1) OA{x 1 ;y 1 ;z 1 } + OA+OB{x 1 +x 2 ; y 1 +y 2 ;z 1 +z 2 } :2 OC Координаты середины отрезка x = ; x1+x2x1+x2x1+x2x1+x22 y1+y2y1+y2y1+y2y1+y22 y = ; x z yО B(x2;y2;z2)B(x2;y2;z2)B(x2;y2;z2)B(x2;y2;z2) OB{x 2 ;y 2 ;z 2 } { ; ; } y1+y2y1+y2y1+y2y1+y22 x1+x2x1+x2x1+x2x1+x22 z1+z2z1+z2z1+z2z1+z22 12 (OA+OB) z1+z2z1+z2z1+z2z1+z22 z = 12 (OA+OB) =OC*

A(x1;y1;z1)A(x1;y1;z1)A(x1;y1;z1)A(x1;y1;z1) x z yО B(x2;y2;z2)B(x2;y2;z2)B(x2;y2;z2)B(x2;y2;z2) Каждая координата середины отрезка равна полусумме соответствующих координат его концов. Каждая координата середины отрезка равна полусумме соответствующих координат его концов. x = ; x1+x2x1+x2x1+x2x1+x22 y1+y2y1+y2y1+y2y1+y22 y = ; Полусумма абсцисс Полусумма ординат C( ; ; ) y1+y2y1+y2y1+y2y1+y22 x1+x2x1+x2x1+x2x1+x22 z1+z2z1+z2z1+z2z1+z22 { ; ; } y1+y2y1+y2y1+y2y1+y22 x1+x2x1+x2x1+x2x1+x22 z1+z2z1+z2z1+z2z1+z22 OC z1+z2z1+z2z1+z2z1+z22 z =z =z =z = Полусумма аппликат * * *

( ; ; ) A(0; 3;-4), B(-2;2;0), B(-2;2;0), середина – точка x = 0+(-2)2 y =y =y =y = M x = ; x1+x2x1+x2x1+x2x1+x22 y1+y2y1+y2y1+y2y1+y22 y = ; Полусумма абсцисс Полусумма ординат z1+z2z1+z2z1+z2z1+z22 z = ; Полусумма аппликат z =z =z =z = ,5-2 = -1 = 2,5 = (a) 424 (a) Найдите координаты середины отрезка

22+(-2) ( ; ; ) C(0; 7; 3) ( ; ; ) ( ; ; ) -5+(-5) C(-5; 4;-3) ( ; ; ); ( ; ; ); C(-1,5;2,5;-4) ( ; ; ); ( ; ; ); 0+(-4) 22 9+(-6) C(-2;-2;1,5) ( ; ; ); ( ; ; ); 7+(-2) C(2,5; 3,5;-2) ( ; ; ); ( ; ; ); -7+(-2) 22 4+(-7) C(-4,5;-1,5;0) 2 3 +(-9) 2 -3+(-5) (-4) Найдите координаты середины отрезков R(2;7;4); M(-2;7;2); C P(-5;1;3); D(-5;7;-9); C R(-3;0;-3); N(0;5;-5); C A(0;-6;9); B(-4;2;-6); C R(-7;4;0); T(-2;-7;0); C A(7;7;0); B(-2;0;-4); C

( ) Найти координаты середин отрезков. Вводите ответы в текстовые поля, не делая пробелов. R(2;7;4); M(-2;7;2); C P(-5;1;3); D(-5;7;-9); C R(-3;0;-3); N(0;5;-5); C A(0;-6;9); B(-4;2;-6); C R(-7;4;0); T(-2;-7;0); C A(7;7;0); B(-2;0;-4); C

Дано: Найти: A(5; 4; -6); A(5; 4; -6); C(-3; 2; 10) – AB C(-3; 2; 10) – середина отрезка AB B( a ; b;c ) Обратная задача. Обратная задача. x x1x1x1x1 y x2x2x2x2 y1y1y1y1 y2y2y2y2 -3= ; 5 + a 5 + a2 2 = ; 4 + b – 6 = 5 + a a = – 11 4 = 4 + b b = 0 B(-11; 0;26) A(5; 4;-6) C(-3; 2;10) B( a ; b;c ) x = ; x1+x2x1+x2x1+x2x1+x2 2 y1+y2y1+y2y1+y2y1+y2 2 y = ; z1+z2z1+z2z1+z2z1+z22 z =z =z =z = z2z2z2z2 z1z1z1z1 z 10 = -6 + c = -6 + c c = 26

zkzkzkzk y jy jy jy j xixixixi + + y zx= a 2 22 A1A1A1A1 OA 3 = zk OA 1 = xi x z y A2A2A2A2 Вычисление длины вектора по его координатам OA 2 = OA OA OA 3 2 По правилу параллелепипеда OA 2 = OA OA OA 3 2 a a {x;y;z} =x OA 2 = y j = =z y y= a x + + z О A A3A3A3A3*

Расстояние между двумя точками M 1 M 2 {x 2 –x 1 ; y 2 –y 1 ;z 2 –z 1 } – M 1 M 2 = (x 2 –x 1 ) 2 +(y 2 –y 1 ) 2 +(z 2 –z 1 ) 2 d =d =d =d = d M1(x1;y1;z1)M1(x1;y1;z1)M1(x1;y1;z1)M1(x1;y1;z1) x z yО M2(x2;y2;z2)M2(x2;y2;z2)M2(x2;y2;z2)M2(x2;y2;z2) M2(x2;y2;z2)M2(x2;y2;z2)M2(x2;y2;z2)M2(x2;y2;z2) M1(x1;y1;z1)M1(x1;y1;z1)M1(x1;y1;z1)M1(x1;y1;z1) + + y zx= a 2 22* (x 2 –x 1 ) 2 +(y 2 –y 1 ) 2 +(z 2 –z 1 ) 2 *

426 (a) 426 (a) Найдите длину вектора АВ A(-1;0;2) B(1;-2;3) A(-1;0;2) и B(1;-2;3) 1 способ 2 способ AB{2;-2;1} – AB = 2 2 +(-2) (1+1) 2 +(–2–0) 2 +(3–2) 2 AB = = 9 1)1)1)1) 2) x 2 + y 2 + z 2 = a (x 2 –x 1 ) 2 +(y 2 –y 1 ) 2 +(z 2 –z 1 ) 2 AB = B(1;-2;3) A(-1;0;2) = 3

426 (б) 426 (б) Найдите длину вектора АВ 1 способ 2 способ AB{ 1; 12;-12} – AB = (-12) 2 = (-34+35) 2 +(–5+17) 2 +(8–20) 2 AB = = 289 1)1)1)1)2) x 2 + y 2 + z 2 = a (x 2 –x 1 ) 2 +(y 2 –y 1 ) 2 +(z 2 –z 1 ) 2 AB = = 17 A(-35;-17;20) B(-34;-5;8) A(-35;-17;20) и B(-34;-5;8) A(-35;-17;20) B(-34; -5; 8) 2 способ 2 способ 1 способ 1 способ