Похідна. Фізичний і геометричний зміст похідної..

Презентация:



Advertisements
Похожие презентации
Похідна. Фізичний і геометричний зміст похідної..
Advertisements

Похідна. Фізичний і геометричний зміст похідної. Підготувала: Марунчак Вікторія.
N дотична січна M Дотичною до кривої в даній точці M, називається граничне положення січної MN, коли точка N прямує вздовж кривої до точкиM.
Похідна Геометричний та механічний зміст похідної.
Знайти значення похідної функції у точці х=-1. Чому дорівнює тангенс кута нахилу дотичної до графіка даної функції в точці з абсцисою ?
1.Задача про миттєву швидкість. 2.Задача про значення змінного струму, який проходить у провіднику. 3.Задача про дотичну до кривої. 4.Задача про густину.
Основні правила та формули диференціювання Виконали: студенти 7 групи І курсу економічного факультету Білоусько А. Криворучко А.
1 Диференціальне та інтегральне числення. Диференціальні рівняння.
1 Диференціальне та інтегральне числення. Диференціальні рівняння.
Алгебра та початки аналізу 11 клас Учитель математики гімназії 31 гімназії 31 Євтух Т.А. Євтух Т.А.
Інтеграл та його застосування. 1. Поняття криволінійної трапеції. 2. Площа криволінійної трапеції. Формула Ньютона- Лейбніца. 3. Визначений інтеграл.
Алгебра і початки аналізу 11 клас Учитель математики гімназії 31 гімназії 31 Євтух Т.А.
функція у = f(x) стала на проміжку (а, в). Й функція у = f(x) зростає на проміжку (а, в) Л функція у = f(x) спадає на проміжку (а, в) Е Х 0 - критична.
Боярська ЗОШ І-ІІІ ступенів 1 Києво-Святошинського р-ну Київської обл. Вч. Овчинникова (Яськова) О.Й. м.Боярка Відкритий урок на тему :
Геометричний та механічний зміст похідної А С В tg A-? tg В -? 4 7 А ВС Знайти градусну міру < В. 3 Знайти градусну міру < А. Робота усно. Обчисліть.
Мета: вивчити властивості лінійної функції: -Область визначення -Область значень -Розміщення графіка в системі координат -Точки перетину графіка з осями.
ФУНКЦІЇ ТА ГРАФІКИ. ЛІНІЙНА ФУНКЦІЯ. Повторення та систематизація знань.
Графік функції. 7 клас. Відредаговано і доповнено вчителем Карлівської ЗОШ І-ІІІ ст. 3 Ігнатовою Ю.І.
Механічний рух Відносність руху. Траекторія. Час, який пройшло тіло. Одиниці швидкості.
ФУНКЦІЇ Варіант 1 Варіант 2 1°. Функцію задано формулою Визначте: 1) значення функції, якщо значення аргументу дорівнює 6; 2) значення аргументу, при якому.
Транксрипт:

Похідна. Фізичний і геометричний зміст похідної.

Ільюх С. М. диференційованість Похідна та диференційованість функції Функція f має в точці x похідну: Фізичний зміст похідної:Геометричний зміст похідної: Функція f диференційована в точці x: в точці x: Функція f неперервна в точці x Арифметичні операції над диференційованими функціями u I v: диференційованими функціями u I v: Похідна складеної функції y=f(u), u=ф(x): Похідна оберненої функції x=ф(y): Таблиця похідних Похідні вищого порядку:

В чому полягає суть фізичного та геометричного змісту похідної та як його використовувати в математичних задачах? В чому полягає суть фізичного та геометричного змісту похідної та як його використовувати в математичних задачах?

Ми були об'єднані в групи ЕКСПЕРТИ НАУКОВЦІ І ДОСЛІДНИКИ НАУКОВЦІ ІІ

(група науковців І)

І.Ньютон сформулював дві основні проблеми математичного аналізу: 1). Довжина шляху, який долається, є постійною(тобто в будь-який момент часу); необхідно знайти швидкість руху у пропонований час; 2). Швидкість руху постійно дана; необхідно знайти довжину пройденого у запропонований час шляху.

1). Задача про миттєву швидкість: 2). Задача про знаходження змінного струму, який проходить по провіднику:

3). Друга похідна: (t)

4). Приклад:

Ільюх С. М. Висновок:

(ГРУПА ДОСЛІДНИКІВ)

Ільюх С. М. під редакцією М.І.Сканаві.

Тіло масою m0 рухається прямолінійно за законом S(t)= αt2 +βt+ λ α, β, λ –сталі Довести, що сила яка діє на тіло стала Задача

Доведення: F=m 0 a a(t)=V(t)=S(t); S(t)=( α t 2 + βt+ λ)=2 α t+β; a(t)=S(t)=(2 α t+ β)=2 α ; a(t)=2 α, α =const;

Сила, що діє на тіло – стала.

Ільюх С. М. Задача Тіло масою m 0 рухається прямолінійно за законом Довести, що сила, яка діє на тіло, пропорційна кубу пройденого шляху.

Ільюх С. М. Доведення F=m 0 a;

Ільюх С. М. Сила, що діє на тіло, пропорційна кубу пройденого шляху.

Ільюх С. М. ( група науковців ІІ)

Ільюх С. М. N дотична січна M Дотичною до кривої в даній точці M, називається граничне положення січної MN, коли точка N прямує вздовж кривої до точкиM.

Ільюх С. М. y x k - кутовий коефіцієнт k - кутовий коефіцієнт рівняння дотичної до графіка функції в точці з абсцисою.

Ільюх С. М. геометричного змісту похідної геометричного змісту похідної (ГРУПА ДОСЛІДНИКІВ) (ГРУПА ДОСЛІДНИКІВ)

Ільюх С. М.

1) Обчисліть, якщо кут між дотичною проведеної до графіка функції у точці з абсцисою і додатнім напрямом осі OX, дорівнює. Розвязання

Ільюх С. М. 2) До графіка функції проведено дотичну у точці з абсцисою. Обчисліть тангенс кута нахилу дотичної до додатнього напрямку осі абсциса. Розвязання

Ільюх С. М. 3) На малюнку зображено графік функції і дотичну до нього в точці з абсцисою. y x 1 1 Розвязання Знайти значення

Ільюх С. М. 4) На малюнку зображений графік функції та дотичні до нього в точках. Користуючись геометричним змістом похідної, знайдіть. y x0 Розвязання

Ільюх С. М. 5) Знайдіть, при яких значеннях параметра а дотична до графіка функції у точці з абсцисою проходить через точку N(3;4). Розвязання

Ільюх С. М. Висновки групи Висновки групи експертів експертів

Ільюх С. М. y 1 =k 1 x +b 1, k 1 =k 2, y 1 IIy 2 y 2 =k 2 x +b 2,

Ільюх С. М. y 1 =k 1 x +b 1, <=> k 1 ·k 2 = -1, <=> y 1 I y 2 y 2 =k 2 x +b 2,

Задача 1 На параболі y= 4- X вибрано дві точки з абсцисами x= -1 і x=3. Через ці точки проведено січну. Знайти рівняння дотичної до параболи, яка паралельна січній.

Розв'язання 1) y = kx + b – рівняння січної Дана січна проходить через точки : (-1;3), (3;-5) Складаємо рівняння січної: 3 = -k + b; 8= -4k, -5 =3k + b; k= -2, то b=1 y= -2x +1 – рівняння січної

Ільюх С. М. 2)y=f(x0) + f '(x0)(x-x0) – рівняння дотичної f(x0)=4 - x02; f '(x0)= -2x0; y =4- x02 - 2x0(x-x0), y = -2x0x +x02 + 4,

3) y 1 =kx +b 1, y 2 =k 2 x +b 2, k 1 =k 2 <=> y 1 ||y 2 4)За умовою паралельності прямих, маємо : -2x 0 = -2 x 0 =1. Отже, y = -2x-3 - шукане рівняння дотичної.

Записати рівняння дотичної до графіка функції f(x)= -x 2 +4, яка перпендикулярна до прямої x-2y+2=0. Записати рівняння дотичної до графіка функції f(x)= -x 2 +4, яка перпендикулярна до прямої x-2y+2=0. Задача 2 Задача 2

Розв'язання Розв'язання y = f(x 0 ) +f '(x 0 )(x-x 0 ), f (x 0 ) = -x , f '(x 0 ) = -2x 0, y= -x x 0 (x-x 0 ), y= -2x 0 x +x рівняння дотичної y= 0,5x +1 - рівняння прямої перпендикулярної до дотичної

Ільюх С. М. y 1 =k 1 x +b 1 і y 2 =k 2 +b 2 k 1 · k 2 = -1 y 1 I y 2

. За умовою перпендикулярності прямих маємо : За умовою перпендикулярності прямих маємо : якщо k 1 = -2x 0, k 2 =0,5,то -2x 0 ·0,5= -1,x 0 =1. якщо k 1 = -2x 0, k 2 =0,5,то -2x 0 ·0,5= -1,x 0 =1. Отже, y= -2x+5 - шукане рівняння дотичної Отже, y= -2x+5 - шукане рівняння дотичної

Ільюх С. М. Задача 3 Знайти величину кута між двома дотичними проведеними з точки (0;-1) до графіка функції y=x 2.