Симметрия относительно прямой 03.04. Осевая симметрия Две точки А и А 1 называются симметричными относительно прямой l, если эта прямая проходит через.

Презентация:



Advertisements
Похожие презентации
ОСЕВАЯ СИММЕТРИЯ Составитель ученица 9 класса школы при Посольстве РФ в Великобритании Савкина Ирина Учитель математики Щербакова В.Б.
Advertisements

Косулиной Анны 8 «А» класс Осевая и центральная симметрии.
«Осевая симметрия». Содержание Симетрия Осевая симметрия Отражательная симметрия Вращательная симметрия Примеры осевой симетрии.
Данная презентация изготовлена учителем математики Сосенской средней щколы N1 Градовой Л. М. Осевая и центральная симметрии.
Симмерия относительно прямой
03.04 Симметрия относительно точки. Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1. Точка О считается.
СИММЕТРИЯ «СИММЕТРИЯ» - соразмерность, одинаковость в расположении частей чего – либо по противоположным сторонам от точки, прямой или плоскости.
Когда красота притягивает, а исследование увлекает Слово «симметрия» в переводе с греческого означает «одинаковость в расположении частей» Симметрия… есть.
Выполнила: Манёнкова Кристина Ученица 11 класса Проверила: Салина Н.П.
Осевая и центральная симметрия. Продолжи фразу В прямоугольнике Диагонали являются биссектрисами углов 2.Все стороны равны 3.Диагонали равны 4.Диагонали.
Центральная симметрия. Что такое симметрия? Какую симметрию называют центральной? Примеры центральной симетрии.
Центральная и осевая симметрии. Рассмотреть осевую и центральную симметрии как свойства некоторых геометрических фигур; Рассмотреть осевую и центральную.
Движение Преобразование одной фигуры в другую, А1А1А1А1 А А1А1А1А1 А при котором сохраняется расстояние между точками.
ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ Работа выполнена учителем МОАУ СОШ с УИОП 48 Шамовой Л.Н.
Выполнила: Давыдова Кристина.. Симметрия бывает. 1. Центральная 2. Осевая 3. Симметрия в пространстве(зеркальная)
Осевая и центральная симметрия Выполнила Уч-ца 8 класса Адиева Аминат.
Симметрия в пространстве. Центр симметрии Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА.
Содержание 2. Движения относительно точки 3. Движения относительно прямой 5. Зеркальная симметрия 6. Заключение 1. Введение 4. Параллельный перенос Закончить.
Симметрия Центральная симметрия Центральная симметрия Осевая симметрия Осевая симметрия Симметрия в мире Симметрия в мире ©Гаврилов Александр 9 «Б» ©Гаврилов.
1) Центральная симметрия; Центральная симметрия; 2) Осевая симметрия; Осевая симметрия; 3) В живой природе; В живой природе 4) Зеркальная симметрия; Зеркальная.
Транксрипт:

Симметрия относительно прямой 03.04

Осевая симметрия Две точки А и А 1 называются симметричными относительно прямой l, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему. Прямая l - ось симметрии Каждая точка прямой l считается симметричной самой себе.

Осевая симметрия Как построить точку А 1 симметричную точке А относительно прямой l ? А А 1 l

Осевая симметрия Преобразование фигуры F в фигуру F', при котором каждая ее точка Х переходит в точку Х ', симметричную относительно данной прямой l, называется преобразованием симметрии относительно прямой l. Фигуры F и F ' называются симметричными относительно прямой l

Осевая симметрия

А В А 1 В 1

ПРАКТИЧЕСКОЕ ЗАДАНИЕ Постройте треугольник А 1 В 1 С 1 симметричный треугольнику АВС относительно прямой l l

Фигура называется симметричной относительно прямой l, если для каждой точки фигуры симметричная ей точка относительно прямой l также принадлежит этой фигуре. Прямая l называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией. У неразвёрнутого угла одна ось симметрии - прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет одну ось симметрии, а равносторонний треугольник – три оси симметрии.

Прямоугольник и ромб, не являющиеся квадратами имеют по две оси симметрии, а квадрат - четыре оси симметрии.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник. У окружности их бесконечно много - любая прямая, проходящая через её центр, является осью симметрии.

Тела, обладающие осевой симметрией.

Преобразование симметрии относительно прямой является движением х у 0 А В1В1 В А1А1 (х 1 ;у 1 )(– х 1 ;у 1 ) (х 2 ;у 2 ) (– х 2 ;у 2 ) (х 2 –х 1 ) 2 + (у 2 –у 1 ) 2 (– х 2 +х 1 ) 2 + (у 2 –у 1 ) 2 АВ=А 1 В 1 АВ = А 1 В 1 =

Осевая симметрия А А 1 l Решаем задачи: 12, 14, 15

Домашнее задание: 1. вопросы: 1-14; 2. Построить треугольник (пятиугольник) симметричный относительно прямой.