Золотое сечение
Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении)- деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине. Отношение большей части к меньшей в этой пропорции выражается квадратичной иррациональностью. Следует заметить, что в то же время отношение меньшей части к большей выражается следующим образом:
В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении впервые встречается в «Началах» Евклида (ок. 300 лет до н. э.), где оно применяется для построения правильного пятиугольника. Лука Пачоли, современник и друг Леонардо да Винчи, называл это отношение «божественной пропорцией». Термин «золотое сечение» (goldener Schnitt) был введён в обиход Мартином Омом в 1835 году. Золотое сечение имеет множество замечательных свойств, но ещё больше свойств вымышленных. Многие люди «стремятся найти» золотое сечение во всём что между полутора и двумя.
- иррациональное алгебраическое число, положительное решение квадратного уравнения x 2 x 1 = 0,откуда, в частности, следуют соотношения: - представляется через тригонометрические функции: представляется в виде бесконечной цепочки квадратных корней: - представляется в виде бесконечной цепной дроби:
В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении (на приведённом рисунке отношение красного отрезка к зелёному, так же как зелёного к синему, так же как синего к фиолетовому, равны ).
Золотое сечение отрезка AB можно построить следующим образом: в точке B восстанавливают перпендикуляр к AB, откладывают на нём отрезок BC, равный половине AB, на отрезке AC откладывают отрезок AD, равный AC CB, и наконец, на отрезке AB откладывают отрезок AE, равный AD. Тогда
Хотите узнать побольше, Google в помощь, Wikipedia в руки.