Теорема Если плоская фигура F лежит в плоскости, параллельной плоскости проектирования π, то ее проекция F на эту плоскость будет равна фигуре F.

Презентация:



Advertisements
Похожие презентации
Параллельное проектирование Пусть π - некоторая плоскость, l - пересекающая ее прямая. Через произвольную точку A, не принадлежащую прямой l, проведем.
Advertisements

Параллельное проектирование Таким образом, каждой точке A пространства сопоставляется ее проекция A' на плоскость π. Это соответствие называется параллельным.
Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность.
Русова И. А. учитель математики МОУ СОШ 26. Сечения многогранников Далее.
Геометрия 9 класс Многоугольники. Содержание Правильные многоугольники Параллелограмм Прямоугольник Ромб Трапеция Теоремы о площади четырехугольника.
Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность.
МБОУ «Кваркенская СОШ» Тема: «Многоугольники, описанные около окружности и вписанные в окружность.» Учитель математики : Затолюк Зоя Николаевна.
Прямоугольник, ромб, квадрат Урок 2. Новый материал Вопрос - Могут ли в параллелограмме диагонали быть перпендикулярными? Попробуем изобразить такой параллелограмм.
Параллельное проектирование Блинова Наталья 10-А.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
Математический диктант: 1.Сколько точек характеризуют прямую? 2.Верно ли, что через любую точку пространства можно провести множество прямых, параллельных.
ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Теорема.
ПРЯМОЙ ЦИЛИНДР Пусть в пространстве заданы две параллельные плоскости и. F – круг в одной из этих плоскостей, например. Рассмотрим ортогональное проектирование.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
Замечательные точки треугольника К числу замечательных точек треугольника относятся: а) точка пересечения биссектрис – центр вписанной окружности; б) точка.
Прямоугольник, ромб, квадрат Урок1. I. Устная работа 1) Существует ли параллелограмм, у которого сторона и диагонали равны соответственно: а) 6 см, 10.
ОРТОГОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
Презентация к уроку по геометрии (10 класс) на тему: Изображение пространственных фигур на плоскости
Подобие треугольников. Задача_1: В прямоугольном треугольнике ABC проведена высота CK к гипотенузе. Назовите пары подобных треугольников. Докажите подобие.
Сфера и шар Сферой называется фигура, состоящая из всех точек пространства, удаленных от данной точки, называемой центром, на данное расстояние, называемое.
Транксрипт:

Теорема Если плоская фигура F лежит в плоскости, параллельной плоскости проектирования π, то ее проекция F на эту плоскость будет равна фигуре F.

Пример 1 Параллельной проекцией равностороннего треугольника может быть треугольник произвольной формы. Действительно, пусть дан произвольный треугольник ABC в плоскости π. Построим на одной из его сторон. например, AC равносторонний треугольник AB 1 C так, чтобы точка B 1 не принадлежала плоскости π. Обозначим через l прямую, проходящую через точки B 1 и B. Тогда ясно, что треугольник ABC является параллельной проекцией треугольника AB 1 C на плоскость π в направлении прямой l. Аналогично, параллельной проекцией прямоугольного треугольника может быть треугольник произвольной формы.

Пример 2 Параллельной проекцией правильного шестиугольника может быть произвольный шестиугольник, у которого противоположные стороны равны и параллельны. Пусть ABCDEF – правильный шестиугольник, O – его центр. Выберем какой-нибудь треугольник, например, AOB. Его параллельной проекцией может быть треугольник AOB произвольной формы. Далее отложим OD = AO и OE = BO. Теперь из точек A и D проведем прямые, параллельные прямой BO; из точек B и E проведем прямые, параллельные прямой AO. Точки пересечения соответствующих прямых обозначим F и C. Шестиугольник ABCDEF и будет искомой параллельной проекцией правильного шестиугольника ABCDEF.

Пример 3 Параллельной проекцией окружности является эллипс. Для произвольной хорды C 1 D 1, параллельной диаметру CD, ее проекция C 1 D 1 ' будет параллельна CD', и отношение C 1 D 1 ':C 1 D 1 будет равно k. Таким образом, проекция окружности получается сжатием или растяжением окружности в направлении какого- нибудь ее диаметра в одно и то же число раз. Такая фигура на плоскости называется эллипсом. Пусть окружность проектируется на плоскость π. AB – диаметр, параллельный этой плоскости и AB' его проекция. Возьмем какой- нибудь другой диаметр CD и пусть CD' - его проекция. Обозначим отношение CD':CD через k.

Упражнение 1 Какие фигуры могут служить параллельными проекциями треугольника? Ответ: Треугольник или отрезок.

Упражнение 2 Может ли параллельной проекцией равностороннего треугольника быть: а) прямоугольный треугольник; б) равнобедренный треугольник; в) разносторонний треугольник? Ответ: а), б), в) Да.

Упражнение 3 Какой фигурой может быть параллельная проекция прямоугольника? Ответ: Параллелограммом или отрезком.

Упражнение 4 Может ли параллельной проекцией прямоугольника быть: а) квадрат; б) параллелограмм; в) ромб; г) трапеция? Ответ: а), б), в) Да; г) нет.

Упражнение 5 Верно ли, что проекцией ромба, если он не проектируется в отрезок, будет ромб? Ответ: Нет.

Упражнение 6 Параллельной проекцией каких фигур может быть квадрат? Ответ: Параллелограммов.

Упражнение 7 В какую фигуру может проектироваться трапеция? Ответ: Трапецию или отрезок.

Упражнение 8 Верно ли, что при параллельном проектировании треугольника: а) медианы проектируются в медианы; б) высоты проектируются в высоты; в) биссектрисы проектируются в биссектрисы? Ответ: а) Да; б), в) нет.

Упражнение 9 Треугольник ABC является параллельной проекцией треугольника ABC. Расстояния между соответствующими вершинами этих треугольников равны a, b, c. Найдите расстояние между точками пересечения медиан треугольников. Ответ: