С А В S D В тетраэдре DABC DBC = DBA = ABC = 90 0, BD = BA = BC = 2 см. Найдите площадь грани ADC. 2 2 2 2 2.

Презентация:



Advertisements
Похожие презентации
С А В S D В тетраэдре DABC DBC = DBA = ABC = 90 0, BD = BA = BC = 2 см. Найдите площадь грани ADC
Advertisements

A В D АВСD – ромб, сторона которого 6 см, СNSD – параллелограмм. Найдите периметр четырехугольника АВNS, если СN = 4 см и угол ADS равен C N S 6.
A В D АВСD – ромб, сторона которого 6 см, СNSD – параллелограмм. Найдите периметр четырехугольника АВNS, если СN = 4 см и угол ADS равен C N S 6.
A В D АВСD – ромб, сторона которого 6 см, СNSD – параллелограмм. Найдите периметр четырехугольника АВNS, если СN = 4 см и угол ADS равен C N S 6.
ПОСТРОЕНИЕ СЕЧЕНИЙ В ТЕТРАЭДРЕ И ПАРАЛЛЕЛЕПИПЕДЕ.
Презентация к уроку (геометрия, 10 класс) по теме: Тетраэдр и параллелепипед
Тетраэдр и параллелепипед. Выполнила: Рябкова Ю.И.
Презентация к уроку по геометрии (10 класс) на тему: "Тетраэдр. Параллелепипед. Задачи на построение сечений" геометрия 10 класс
Параллелепипед Параллелепипед – поверхность, составленная из шести параллелограммов.
Параллелепипед Геометрия 10.Урок20.. Параллелепипед-это Поверхность составленная из двух равных параллелограммов, расположенных в параллельных плоскостях.
С А В S D В тетраэдре DABC DBC = DBA = ABC = 60 0, BD = BA = BC = 4 см. Найдите площадь грани ADC
А А 1 А 1 В В 1 В 1 С С 1 С 1 D D1D1 1) несколько точек, которые лежат в плоскости α. α Найдите:
900igr.net Прямоугольный параллелепипед Параллелепипед.
Параллелепипед. Параллелепи́пед Параллелепи́пед (от греч. παράλλος параллельный и греч. επιπεδον плоскость) призма, основанием которой служит параллелограмм,
Учитель 1 категории Попова В.В. МБОУ СОШ 3. Тетраэдр Тетраэдр – поверхность, составленная из четырех треугольников. многогранником Поверхность, составленную.
Параллелепипед © Мальцев Глеб. Определение Параллелепипед ( от греч. παράλλος параллельный и греч. επιπεδον плоскость ) призма, основанием которой служит.
Плоскости и пересекаются по прямой а. Из точки М проведены перпендикуляры МА и МВ соответственно к плоскостям и. Прямая а пересекает плоскость АМВ в точке.
Свойства параллелепипеда. Заполнить таблицу Вариант 1 Вариант 2 Свойство Прямой параллеле пипед (непрямоуг ольный) Прямоуг ольный параллел епипед Свойство.
Площадью полной поверхности призмы площадью боковой поверхности призмы Площадью полной поверхности призмы называется сумма площадей всех граней, а площадью.
Задача 1 ( 375): Дан тетраэдр ABCD. Точки K и M – середины AB и CD. Докажите, что середины отрезков KC, KD, MA и MB являются вершинами некоторого параллелограмма.
Транксрипт:

С А В S D В тетраэдре DABC DBC = DBA = ABC = 90 0, BD = BA = BC = 2 см. Найдите площадь грани ADC

А В С D N M E F F, Е, N, M - средины ребер тетраэдра. Определите взаимное расположение прямых NM и FЕ и угол между ними.

А В С D N M N, M - средины ребер тетраэдра. Определите взаимное расположение прямых NM и ВС.

А В С D N M N, M, Р и К - средины ребер тетраэдра. Определите взаимное расположение прямых NК и МР. Р К

А В С D N N, Р и К - средины ребер тетраэдра. Определите взаимное расположение прямых NВ и РК. Р К

А В С D N N и Р - средины ребер тетраэдра. Определите взаимное расположение прямой NР и плоскости АСD Р

А В С D Определите взаимное расположение прямой DВ и плоскости АСD

А В С D N F, S, N и Р - средины ребер тетраэдра. Определите взаимное расположение прямой CF и плоскости NPS Р S F

А В С D N K, F, S, N и Р - средины ребер тетраэдра. Определите взаимное расположение прямой KF и плоскости NPS Р S F K

Параллелепипед АВСDA 1 B 1 C 1 D 1 – АВСD и A 1 B 1 C 1 D 1 Параллелепипед АВСDA 1 B 1 C 1 D 1 – поверхность, составленная из двух равных параллелограммов АВСD и A 1 B 1 C 1 D 1 и четырех параллелограммов АВВ 1 А 1, ADD 1 A 1, CDD 1 C 1 и ВСС 1 В 1 А В С D D1D1 С1С1 A1A1 B1B1

А В С D D1D1 С1С1 A1A1 B1B1 Параллелепипед АВСDA 1 B 1 C 1 D 1 Грани Вершины Ребра Противоположные грани

Параллелепипед. Параллелепипед. Слово составлено из греческих «плоскость» «поверхность». Слово встречалось у Эвклида и Герона, но его еще не было у Архимеда.,,

А В С D А1А1 D1D1 С1С1 B1B1 Диагональ параллелепипеда - Диагональ параллелепипеда - отрезок, соединяющий противоположные вершины.

Прямоугольный параллелепипед Две грани параллелепипеда называются параллельными, если их плоскости параллельны.

А В С D D1D1 С1С1 A1A1 B1B1 Свойства параллелепипеда Противоположные грани параллелепипеда параллельны и равны.

А В С D D1D1 С1С1 A1A1 B1B1 Свойства параллелепипеда Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.