Первісна Алгебра і початки аналізу, 11 клас підготував учитель математики Колодистенської ЗОШ І – ІІІ ступенів Нетудихата Володимир Ілліч, спеціаліст вищої.

Презентация:



Advertisements
Похожие презентации
Первісна та її властивості.. Функція F(x) називається первісною функції f(x) на деякому про ­ міжку, якщо для всіх x із цього проміжку виконується рівність.
Advertisements

Функція 10 клас (академічний рівень) Підготувала: Кряжева Олена Петрівна вчитель математики Боровиківського НВК Звенигородської районної ради Черкаської.
Нехай функція (х) неперервна на деякому проміжку. Тоді на цьому проміжку існує функція y=F(x), така, що для всіх x із вказаного проміжку F(x)=f(x). Функція.
Мета: вивчити властивості лінійної функції: -Область визначення -Область значень -Розміщення графіка в системі координат -Точки перетину графіка з осями.
Мета уроку : повторити вивчений матеріал по темі «Функція»; вивчити поняття області визначення та області значень функції;навчитися шукати область визначення.
Узагальнення та систематизації знань з теми: Функція. Властивості функції. Квадратична функція. Розробила учитель математики Макіївської загальноосвітньої.
9 клас Парабола Аналізуючи формули у = х 2 і у = х 2 +2, зауважимо, що при одному і тому самому значенні х значення другої функції завжди на 2 більше.
Тема: Функція. 1. Поняття функції. 2. Способи задання функцій. 3. Класифікація елементарних функцій. 4. Монотонні функції. 5. Парні та непарні функції.
Тема: Розвязування показникових рівнянь Математика здає свої фортеці лише сильним, сміливим і кмітливим А.Конфорович.
Інтеграл та його застосування Алгебра і початки аналізу, 11 клас підготував учитель математики Колодистенської ЗОШ І – ІІІ ступенів Нетудихата Володимир.
1 Інтегральне числення.. 2 Невизначений інтеграл. Властивості невизначеного інтеграла. Визначений інтеграл. Формула Ньютона - Лейбніца. Властивості визначеного.
Методична розробка теми: «Показникова функція» Учитель математики: Фетісова І.В. ЗОШ 3, м. Краматорськ 2010 рік.
Квадратична функція 9 клас Вчитель математики Вчитель математики Ковпитської ЗОШ І-ІІІ ст Ковпитської ЗОШ І-ІІІ ст Засько Оксана Олександрівна Засько Оксана.
Основні правила та формули диференціювання Виконали: студенти 7 групи І курсу економічного факультету Білоусько А. Криворучко А.
ПЕРЕТВОРЕННЯ ЦІЛИХ ВИРАЗІВ Пригадаємо, які два обернені види перетворень ми здійснюємо під час роботи з цілими виразами: Записати вираз у вигляді многочлена.
НОВА ТЕОРЕТИКО-ЧИСЛОВА ФУНКЦІЯ ТА ЇЇ ВЛАСТИВОСТІ Міністерство освіти і науки, молоді та спорту України Департамент освіти і науки Київської обласної державної.
«Методика вивчення елементарних функцій». План 1.Місце в програмі. Вимоги до знань і умінь. 2. Методика введення поняття лінійна функція y = kx+b. 3.
Функція Функція – залежність змінної у від змінної х, якщо кожному значенню змінної х відповідає єдине значення змінної у.
Функція. Область визначення і область значень функції. 7 клас.
Степенева функція. Властивості степеневої функції та її графік Урок алгебри у 10 класі Презентація створена учителем математики Яснозірської ЗОШ І – ІІІ.
Транксрипт:

Первісна Алгебра і початки аналізу, 11 клас підготував учитель математики Колодистенської ЗОШ І – ІІІ ступенів Нетудихата Володимир Ілліч, спеціаліст вищої категорії, учитель-методист 2013 рік

3. Значення диференціального та інтегрального числення Операції в математиці. 6. Означення первісної. 7. Таблиця первісних Вправи на формування поняття первісної. 10. Основні властивості первісної. 11. Вправа на основну властивість первісної. 12. Графіки первісних для даної функції Вправа на графіки первісних. 16. Правила знаходження первісної. 17. Методичні рекомендації. Зміст

Сила і загальність методу диференціального й інтегрального числення такі, що не ознайомившись із ними, не можна як слід зрозуміти все значення математики для природознавства, і техніки і навіть повністю оцінити всю красу і принадність самої математичної науки. А.М. Колмогоров

Операції в математиці Кожна дія (операція) в математиці має обернену: додавання-віднімання; множення-ділення; піднесення до степеня – добування кореня; логарифмування – потенціювання; множення одночлена на многочлен - розкладання многочлена на множники способом винесення спільного множника за дужки. Деякі з обернених операцій виявилися неоднозначними: є числа 5 і -5, бо

Основна операція диференціального числення є знаходження похідної даної функції Обернена операція до диференціювання є: за відомою похідною деякої функції знайти (відновити) саму функцію, яку називають первісною F для відомої функції. Операція знаходження первісної F для даної функції називається інтегруванням. Отже, інтегрування є оберненою операцією до операції диференціювання.

Первісна Означення. Первісною для даної функції y=f(x) на заданому проміжку [ a; b ] називається така функція F(x), похідна якої для всіх x з інтервалу [ a; b ] дорівнює f(x), тобто F ʹ (x)=f(x) для всіх x є [ a; b ]. Наприклад, функція F(x)=x 2 є первісною для функції f(x)=2x на проміжку (-;), оскільки на цій множині виконується рівність (x 2 ) ʹ =2x. Для функції f(x)=2x первісними будуть функції F(x)=x 2 +1;F(x)=x 2 -10; і т.д., тобто загальний вигляд первісних для функції f(x)=2x матимуть вигляд F(x)=x 2 +С, де С – довільна стала. Отже, операція інтегрування неоднозначна.

Таблиця первісних Функція y=f(x) Загальний вигляд первісної F(x)+C k, де k - стала kx+C x n, де n є Z sin x- cos x+C cos xsin x+C tg x + C - ctg x + C

Яка з двох функцій є первісною для другої?

Вказати первісну F для кожної даної функції f

ОСНОВНА ВЛАСТИВІСТЬ ПЕРВІСНОЇ: Якщо на проміжку функція F(x) є первісною для f(x), то на цьому проміжку первісною для f(x) буде також функція F(x)+C Первісні однієї і тієї ж функції можуть відрізнятись лише на сталий доданок

Яка з функцій є первісною для функції ?

x y F(x)=x 2 +2 F(x)=x 2 F(x)=x 2 -4 F(x)=x 2 -7 F(x)=x 2 -2 Графіки первісних для даної функції Основній властивості первісних можна надати геометричного змісту: Графіки будь-яких двох первісних даної функції можна отримати один з одного паралельним перенесенням уздовж осі ординат

Завдання. Побудувати графік первісної для функції f(x)=2x, яка проходить через точку M (2; 6) x y

x y x y Вказати, на якому малюнку зображено графіки первісної функції а)б) в)г) y

Завдання. На малюнку зображено первісну функції. Показати, яка з первісних проходить через точку K(4; 2) і вибрати формулу первісної, яка проходить через вказану точку. x y

Правила знаходження первісної Приклад: І правило знаходження первісної ІІ правило знаходження первісної ІІІ правило знаходження первісної Приклад:

Методичні рекомендації Слайди 3 -9 використовуються при формуванні поняття первісної Слайди доцільно використати при засвоєнні нового матеріалу про основну властивість первісної Слайди 12, 14, 15 застосовувати при вивченні графіків первісних для даної функції Слайд 13 пропонується для самостійної роботи Слайд 16 бажано використати при вивченні нового матеріалу

Список використаної літератури: 1. Мерзляк А.Г. Алгебра. 11 клас: підруч. для загальноосвіт. навчальн. закладів: академ. рівень, проф. рівень / А. Г. Мерзляк, Д.А. Номіровський, В.Б. Полонський, М. С. Якір. – Х. : Гімназія, – 431 с.: іл.