ФункцияТочка графикаПреобразование графика У=f(x)(x 0 ;у 0 ) У=f(x)+а(x 0 ;у 0 +а)Смещение по оси У на а (а >0 вверх, а 0 влево, b1 растяжение в k раз,

Презентация:



Advertisements
Похожие презентации
Преобразование графиков функций.. Преобразование: t > 0 t x y Сдвиг по оси x влево Сдвиг по оси Оx.Оx.
Advertisements

Преобразование графиков функций. Преобразование: t > 0 t x y сдвиг вдоль оси x влево.
Построение графиков функций с помощью преобразований плоскости (с)Пономарева Е. В., ГОУ СОШ 156, учитель математики, г. Санкт-Петербург, 2007 год.
ГРАФИКОВ ФУНКЦИЙ. Параллельный перенос по оси ОУ х у 0 -2 y = sin x y = sin x - 2 Вниз на 2 единицы y =f(x) y = f(x) – 2.
Построить графики функций в одной системе координат и сделать выводы: 1. у=х 2 ; 2. у=х 2 +1; 3. у=х 2 -1.
Содержание. Определение График Преобразования: –Смещения по оси Х –Смещения по оси У –Растяжение –Сжатие –Модуль.
Преобразование графиков функций. Параллельный перенос графика вдоль оси абсцисс на а единиц y = f(x + a): влево, если a > 0; влево, если a > 0; вправо,
Преобразование графиков функций. Преобразование: t > 0 t x y сдвиг по оси x влево.
Геометрические преобразования графиков функции Параллельный перенос, растяжение и сжатие.
Основные преобразования графиков функций. Симметрия относительно осей координат Построение графиков функций y = f (x) и y = –f (x) у = 2 Х у = –2 Х.
Растяжение и сжатие графиков функцийРастяжение и сжатие графиков функций.
Построение графиков с помощью преобразований К уроку «Функции» в 11 классе.
Алгебра и начала анализа – 10 класс. Преобразование симметрии относительно оси х f(x) - f(x) Г рафик функции y = - f(x) получается преобразованием симметрии.
Преобразование графиков тригонометрических функций
F(x) f(-x) f(x) -f(x)Преобразование симметрии относительно оси х f(x) -f(x) График функции у = -f(x) симметричен графику функции у = f(x) относительно.
Преобразование графиков функций. Преобразование: t > 0 t x y сдвиг по оси x влево.
Преобразование графиков функций А Содержание Параллельный перенос вдоль оси OY Параллельный перенос вдоль оси OX Растяжение (сжатие) в k.
Алгоритм построения графика функции у=а(х+m) 2 + n 1.Построить график функции у=|a|x 2 (по точкам). 0x y 4. Осуществить сдвиг полученного графика вдоль.
1.1. У = - f(x) y = f(x), симметрия относительно оси ОХ. 2. У = f(- x) y = f(x), симметрия относительно оси ОУ. 3. У = - f (- x) y = f(x), симметрия относительно.
Виды преобразований преобразование симметрии относительно оси ox f ( x ) > - f ( x ); преобразование симметрии относительно оси ox f ( x ) > - f ( x );
Транксрипт:

Функция Точка графика Преобразование графика У=f(x)(x 0 ;у 0 ) У=f(x)+а(x 0 ;у 0 +а)Смещение по оси У на а (а >0 вверх, а<0 вниз) У=f(x+b)(x 0 -b;у 0 )Смещение по оси X на b (b >0 влево, b<0 вправо) У=k f(x)(x 0 ;k у 0 )Изменение размера по вертикали ( k>1 растяжение в k раз, 0<k<1 сжатие в 1/k раз) У= f(m x)(x 0 /m; у 0 )Изменение размера по горизонтали ( m>1 сжатие в m раз, 0<m<1 растяжение в 1/m раз) У=- f(x)(x 0 ;- у 0 )Симметрия графика относительно оси Х. У= f(- x)(-x 0 ;у 0 )Симметрия графика относительно оси У. У= |f(x)|(x 0 ; |у 0 |)Симметрия относительно оси Х той части графика, что ниже оси Х. У= f(|x|)(|x 0 |; у 0 )Симметрия относительно оси У той части графика, что правее оси У. х У

I I I I I I I xy sin (x-2П/3)+1 y

I I I I I I I xy sin x y cos x y

I I I I I I I xy cos(x-П/3)-2 y cos x y

I I I I I I I 1,5cos x y xy cos x y

I I I I I I I xy cos x y 2 cos x y 3,5 cos x y

I I I I I I I xy cos x y 0,5cos x y

I I I I I I I xy cos x y cos 2x y

I I I I I I I xy cos x y cos 0,5x y

xy cos x y |cos x| y