ТЕОРЕМА ПИФАГОРА СТАРИННЫЕ ЗАДАЧИ учительматематики Лачкова Н.Н.

Презентация:



Advertisements
Похожие презентации
ИСТОРИЧЕСКИЕ ЗАДАЧИ и не только Применение теоремы Пифагора.
Advertisements

Решение задач на применение теоремы Пифагора Автор: Рычкова Валентина Геннадьевна, учитель математики учитель математики СОУ «Свердловская СОШ» СОУ «Свердловская.
Практическое применение теоремы Пифагора. У египтян была известна задача о лотосе. «На глубине 12 футов растет лотос с 13- футовым стеблем. Определите,
Урок геометрии по теореме Пифагора Трофимова Людмила Викторовна учитель математики Сиверская гимназия 1.
ЗАДАЧИ: Задача индийского математика XII века Бхаскары ТЕОРЕМАПИФАГОРАТЕОРЕМАПИФАГОРА На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал.
Теорема Пифагора. Треугольники имеющие стороны: 3, 4, 5 6, 8, 10 5, 12, 13 прямоугольные.
Задачи о растениях, которые несколько веков помогают изучать теорему Пифагора.
Кроссворд Вопросы: 1.Равенство двух отношений. 2.Отрезок, соединяющий вершину треугольника с серединой противоположной стороны. 3.Древнегреческий учёный,
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство « убогих.
Теорема Пифагора «Решение задач». Заповеди Пифагора.
Обобщающий урок по теме: «Теорема Пифагора» План урока: 1) значение теоремы Пифагора; 2) решение задач по готовым чертежам; 3) решение исторических задач.
«Древнекитайское и древнеиндийское доказательства. Доказательство Аннариция» Брянский городской лицей 1 им. А.С.Пушкина. Проект «Теорема Пифагора» Брянск.
«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!»
«Теорема невесты» Какое чудо – этот переход от слепоты к прозрению, к пониманию сути дела! М. Вертгеймер М. Вертгеймер.
Руководитель проекта: Мешулина Л.Б., учитель математики МОУ «Андреевская средняя общеобразовательная школа» Судогодского района, Владимирской области.
Задачи На какое расстояние надо отодвинуть от стены дома нижний конец лестницы длиною 17м, чтобы верхний конец её достал до слухового окна, находящегося.
Демонстрационный материал к уроку геометрии в 8 классе по теме : Теорема Пифагора.
«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!» 1.
Урок геометрии в 8 классе Теорема Пифагора учитель математики Авраменко Н.Л. МАОУ Новоселезневская СОШ 2011.
Теорема Пифагора. Цель урока: Изучить одну из основных теорем геометрии, познакомиться с основными этапами жизни и деятельности Пифагора.
Транксрипт:

ТЕОРЕМА ПИФАГОРА СТАРИННЫЕ ЗАДАЧИ учитель математики Лачкова Н.Н

1. Тополь у реки На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С течением реки его ствол составлял. Запомни теперь, что в том месте река В четыре лишь фута была широка. Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?» Задача индийского математика XII в Бхаскары

Математическая модель задачи

2. Древнерусская задача Случися некоему человеку к стене лестницу прибрати, стены тоя же высота есть 117 стоп. И обрети лестницу долготою 125 стоп. И ведати хочет, калико стоп сея лествици нижний конец от стены отстоять и мать Из «Арифметики» Л.Ф. Магницкого

Математическая модель задачи

3. Древнеиндийская задача. Над озером тихим, С полфута размером высился лотоса цвет. Он рос одиноко. И ветер порывом Отнес его в сторону. Нет Боле цветка над водой. Нашел же рыбак его ранней весной В двух футах от места, где рос. Итак, предложу я вопрос: Как озера вода здесь глубока?

4. Задача арабского математика XI века На обоих берегах реки растет по пальме, одна против другой. Высота одной 30 локтей, другой – 20 локтей. Расстояние между их основаниями – 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, выплывшую к поверхности воды между пальмами. Они кинулись к ней разом и достигли её одновременно. На каком расстоянии от основания более высокой пальмы появилась рыба? На обоих берегах реки растет по пальме, одна против другой. Высота одной 30 локтей, другой – 20 локтей. Расстояние между их основаниями – 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, выплывшую к поверхности воды между пальмами. Они кинулись к ней разом и достигли её одновременно. На каком расстоянии от основания более высокой пальмы появилась рыба?

Математическая модель задачи

5. Задача о бамбуке из древнекитайского трактата «Гоу-гу» Имеется бамбук высотой Имеется бамбук высотой в 1 чжан. Вершину его в 1 чжан. Вершину его согнули так, что она согнули так, что она касается земли на касается земли на расстоянии 3 чи от корня расстоянии 3 чи от корня (1 чжан = 10 чи). Какова высота бамбука (1 чжан = 10 чи). Какова высота бамбука после сгибания? после сгибания?

6. Задача из китайской "Математики в девяти книгах" Имеется водоем со стороной 1 чжан ( 1 чжан=10 чи ). В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснется его. Спрашивается : какова глубина водоема и какова длина камыша

7. Египетская задача На глубине 12 футов растет лотос с 13-футовым стеблем. Определите, на какое расстояние цветок может отклониться от вертикали, проходящей через точку крепления стебля ко дну.