«Показательная функция и ее применение» «Показательная функция и ее применение» Преподаватель математики Мусинова М.В. 2012 г.

Презентация:



Advertisements
Похожие презентации
«Показательная функция и ее применение» Презентацию подготовил ученик 11 класса Бондаренко Игорь Учитель Абрамова Светлана Ивановна МБОУ «Ракитовская СОШ»
Advertisements

Показательная функция и ее применение.
Презентация к уроку по алгебре (10 класс) на тему: Показательная функция, ее свойства и график
Работа по теме «Показательная функция и ее применение» и ее применение» выполнена учащимися 10 «Б» класса учитель Александрова Ольга Александровна МОУ.
Показательная функция и ее применение в жизни
Некоторые наиболее часто встречающиеся виды трансцендентных функций, прежде всего показательные, открывают доступ ко многим исследованиям. Л.Эйлер Ох уж.
Автор: Семёнова Елена Юрьевна МОУ СОШ 5 - «Школа здоровья и развития» г. Радужный х у 0 y = а х, а > 1 1 х у 0 y = а х, 0 < а < 1 1.
Автор: Семёнова Елена Юрьевна МОУ СОШ 5 - «Школа здоровья и развития» г. Радужный х у 0 y = а х, а > 1 1 х у 0 y = а х, 0 < а < 1 1.
В природе, технике и экономике встречаются многочисленные процессы, в ходе которых значение величины меняется в одно и то же число раз. Эти процессы называются.
Показательная функция и её свойства Муниципальное общеобразовательное учреждение гимназия 33 г. Костромы учитель математики Степанова О.Ю.
У М х ПОКАЗАТЕЛЬНАЯ ФУНКЦИЯ, ЕЕ СВОЙСТВА И ГРАФИК.
Показательная функция Свойства и график. Определение показательной функции Показательной функцией называется функция у = а, где а – заданное число, а>0,
«Некоторые наиболее часто встречающиеся виды трансцендентных функций, прежде всего показательные, открывают доступ ко многим исследованиям» Л.Эйлер.
Показательная функция, ее свойства и график Демонстрационный материал 11 класс.
Приведём примеры, где мы сталкиваемся с показательной функцией в повседневной жизни, а также, как она применяется на практике. Напомним вид показательной.
Решение показательных уравнений 11 класс. Цель:обобщить и закрепить теоретические знания методов, умения и навыки решения показательных уравнений на основе.
Показательная функция, ее свойства и график Демонстрационный материал 10 класс.
2012 г. Составил: Раух А.И. Учитель математики РГ «Эврика»
Методическая разработка (алгебра, 10 класс) по теме: Презентация по теме "Показательная функция, её свойства и график"
«О, сколько нам открытий чудных Готовит просвещенья дух, И опыт, сын ошибок трудных, И гений, парадоксов друг» А.С. Пушкин.
Транксрипт:

«Показательная функция и ее применение» «Показательная функция и ее применение» Преподаватель математики Мусинова М.В г.

«Некоторые наиболее часто встречающиеся виды трансцендентных функций, прежде всего показательные, открывают доступ ко многим исследованиям» Л.Эйлер.

Показательная функция. Функция вида у=а х,где а-заданное число, а>0, а 1, х-переменная, называется показательной.

Показательная функция обладает следующими свойствами: 1.Д(у): множество R всех действительных чисел; 2.Е(у):множество всех положительных чисел; 3. Показательная функция у=а х является возрастающей на множестве всех действительных чисел,если а>1,и убывающей,если 0<а<1; 4. Не является ни четной, ни нечетной; 5. Не ограничена сверху,ограничена снизу; 6. Не имеет ни наибольшего, ни наименьшего значения; 7.Непрерывна; 8. Если а>1,то функция выпукла вниз.

Графики функции у=2 х и у=(½) х 1. График функции у=2 х проходит через точку (0;1) и расположен выше оси Ох. а>1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше оси Ох. 0<а<1 Д(у): х є R Е(у): у>0 Убывает на всей области определения.

Экспонента

Показательная функция и её применение в природе и технике.

Подумайте !Где может использоваться показательная функция?? «Показательная функция» является основополагающей при изучении таких тем, как «Производная показательной функции», «Термодинамика», «Электромагнетизм», «Ядерная физика», «Колебания», используется для решения некоторых задач судовождения. «Показательная функция» является основополагающей при изучении таких тем, как «Производная показательной функции», «Термодинамика», «Электромагнетизм», «Ядерная физика», «Колебания», используется для решения некоторых задач судовождения.

Наглядный бытовой пример! Все, наверное, замечали, что если снять кипящий чайник с огня, то сначала он быстро остывает, а потом остывание идет гораздо медленнее. Дело в том, что скорость остывания пропорциональна разности между температурой чайника и температурой окружающей среды. Чем меньше становится эта разность, тем медленнее остывает чайник. Если сначала температура чайника равнялась То, а температура воздуха T1, то через t секунд температура Т чайника выразится формулой: Все, наверное, замечали, что если снять кипящий чайник с огня, то сначала он быстро остывает, а потом остывание идет гораздо медленнее. Дело в том, что скорость остывания пропорциональна разности между температурой чайника и температурой окружающей среды. Чем меньше становится эта разность, тем медленнее остывает чайник. Если сначала температура чайника равнялась То, а температура воздуха T1, то через t секунд температура Т чайника выразится формулой: T=(T 1 -T 0 )e -kt +T 1, T=(T 1 -T 0 )e -kt +T 1, где k - число, зависящее от формы чайника, материала, из которого он сделан, и количества воды, которое в нем находится. где k - число, зависящее от формы чайника, материала, из которого он сделан, и количества воды, которое в нем находится.

При падении тел в безвоздушном пространстве скорость их непрерывно возрастает. При падении тел в воздухе скорость падения тоже увеличивается, но не может превзойти определенной величины. При падении тел в воздухе скорость падения тоже увеличивается, но не может превзойти определенной величины.

Много трудных математических задач приходится решать в теории межпланетных путешествий. Одной из них является задача об определении массы топлива, необходимого для того, чтобы придать ракете нужную скорость v. Эта масса М зависит от массы m самой ракеты (без топлива) и от скорости v 0, с которой продукты горения вытекают из ракетного двигателя. Много трудных математических задач приходится решать в теории межпланетных путешествий. Одной из них является задача об определении массы топлива, необходимого для того, чтобы придать ракете нужную скорость v. Эта масса М зависит от массы m самой ракеты (без топлива) и от скорости v 0, с которой продукты горения вытекают из ракетного двигателя.

Если не учитывать сопротивление воздуха и притяжение Земли, то масса топлива определяется формулой: Если не учитывать сопротивление воздуха и притяжение Земли, то масса топлива определяется формулой: (формула К.Э.Циолковского) (формула К.Э.Циолковского). Например, для того чтобы ракете с массой 1,5 т придать скорость 8000 м/с, надо при скорости истечения газов 2000 м/с взять примерно 80 т топлива.

Если при колебаниях маятника, гири, качающейся на пружине, не пренебрегать сопротивлением воздуха, то амплитуда колебаний становится все меньше, колебания затухают. Отклонения точки, совершающей затухающие колебания, выражается формулой: s=Ae -kt sin(?t+?). Так как множитель е -kt уменьшается с течением времени, то размах колебаний становится все меньше и меньше. Если при колебаниях маятника, гири, качающейся на пружине, не пренебрегать сопротивлением воздуха, то амплитуда колебаний становится все меньше, колебания затухают. Отклонения точки, совершающей затухающие колебания, выражается формулой: s=Ae -kt sin(?t+?). Так как множитель е -kt уменьшается с течением времени, то размах колебаний становится все меньше и меньше.

Когда радиоактивное вещество распадется, его количество уменьшается. Через некоторое время остается половина первоначального количества вещества. Этот промежуток времени to называется периодом полураспада. Вообще через t лет масса m вещества будет равна: m=m 0 (1/2) t/t 0, где m 0 - первоначальная масса вещества. Чем больше период полураспада, тем медленнее распадается вещество. Когда радиоактивное вещество распадется, его количество уменьшается. Через некоторое время остается половина первоначального количества вещества. Этот промежуток времени to называется периодом полураспада. Вообще через t лет масса m вещества будет равна: m=m 0 (1/2) t/t 0, где m 0 - первоначальная масса вещества. Чем больше период полураспада, тем медленнее распадается вещество. Явление радиоактивного распада используется для определения возраста археологических находок, например, определен примерный возраст Земли, около 5,5 млрд. лет, для поддержания эталона времени. Явление радиоактивного распада используется для определения возраста археологических находок, например, определен примерный возраст Земли, около 5,5 млрд. лет, для поддержания эталона времени.

Задача: Период полураспада плутония равен 140 суткам. Сколько плутония останется через 10 лет, если его начальная масса равна 8 г ? m = ? Ответ: 1, (г).

Вот некоторые из Нобелевских лауреатов, получивших премию за исследования в области физики с использованием показательной функции: Вот некоторые из Нобелевских лауреатов, получивших премию за исследования в области физики с использованием показательной функции: Павел Черенков-1958 г. Павел Черенков-1958 г. Игорь Тамм г. Игорь Тамм г. Илья Франк-1958 г. Илья Франк-1958 г.

Вот некоторые из Нобелевских лауреатов, получивших премию за исследования в области физики с использованием показательной функции: Вот некоторые из Нобелевских лауреатов, получивших премию за исследования в области физики с использованием показательной функции: Пьер Кюри г. Пьер Кюри г.

Вот некоторые из Нобелевских лауреатов, получивших премию за исследования в области физики с использованием показательной функции: Вот некоторые из Нобелевских лауреатов, получивших премию за исследования в области физики с использованием показательной функции: Вильсон Роберт Вудро г. Вильсон Роберт Вудро г.

Она не перестаёт нас удивлять! Показательная функция также используется при решении некоторых задач судовождения, например, функцию е -x используют в задачах, требующих применения биноминального закона (повторение опытов), закона Пуассона (редких событий), закона Релея (длина случайного вектора). Показательная функция также используется при решении некоторых задач судовождения, например, функцию е -x используют в задачах, требующих применения биноминального закона (повторение опытов), закона Пуассона (редких событий), закона Релея (длина случайного вектора).

Применение показательной функции в биологии.

В питательной среде бактерия кишечной палочки делится каждую минуту. Понятно, что общее число бактерий за каждую минуту удваивается. Если в начале процесса была одна бактерия, то через х минут их число (N) станет равной 2 х, т.е. N(х) = 2 х.

Задача: Ежемесячно на банковский вклад, равный S 0 рублей начисляется р%. На сколько процентов возрастет банковский вклад за х месяцев? Решение. Пусть р = 2%, х = 12 месяцев. Тогда за год банковский вклад возрастет на Ответ: на 27%.

Спасибо за внимание.