1 Второй закон термодинамики. Энтропия Энтропия: основные определения Изменение энтропии в различных процессах: изохорном изобарном изотермическом адиабатическом.

Презентация:



Advertisements
Похожие презентации
Физическая химия. Термодинамика.. 2 Теплоемкость. Виды теплоемкости. Теплоемкость – количество теплоты, необходимое для нагревания единичного количества.
Advertisements

КРУГОВЫЕ ПРОЦЕССЫ. ТЕПЛОВЫЕ МАШИНЫ 1.Круговые обратимые и необратимые процессы 2. Тепловые машины 3. Цикл Карно (обратимый) 4. Работа и КПД цикла Карно.
Круговым называется процесс, при котором термодинамическая система, пройдя через ряд состояний, возвращается в исходное состояние Круговые процессы.
КРУГОВЫЕ ПРОЦЕССЫ Цикл Карно Тепловые машины Холодильные машины.
Презентация к уроку по физике (10 класс) по теме: Основы термодинамики
Термодинамика Термодинамика (от греч. Therme тепло + Dynamis сила) раздел физики, изучающий соотношения и превращения теплоты и других форм энергии.
Второй закон термодинамики 1.Два положения 2-го закона термодинамики. Круговые процессы тепловых машин. 2. Термический КПД цикла. Холодильный коэффициент.
Лекции по физике. Молекулярная физика и основы термодинамики Второе начало термодинамики. Тепловые двигатели. Энтропия. Цикл Карно.
Рассмотрим соотношение (11.9.2), полученное для цикла Карно где Т 1 – температура нагревателя, Q 1 – тепло, полученное газом от нагревателя, Т 2 – температура.
Лекция 2 Элементы термодинамики 1 План лекции 1. Термодинамика. 2. Основные термины термодинамики. 3. Работа газа. 4. Тепловая энергия. Внутренняя энергия.
Законы термодинамики. Вопросы для повторения: Что такое внутренняя энергия?внутренняя энергия Назовите способы изменения внутренней энергии.способы изменения.
ЭНТРОПИЯ. ВТОРОЕ И ТРЕТЬЕ НАЧАЛА ТЕРМОДИНАМИКИ 1.Приведенная теплота. Энтропия 2. Изменение энтропии 3. Поведение энтропии в процессах изменения агрегатного.
Лекция 3 Второе начало термодинамики 18/09/2014 Алексей Викторович Гуденко S = knG.
Автор - составитель теста В. И. Регельман источник: regelman.com/high/IdealGas/1.php Автор презентации: Бахтина И.В. Тест по теме «Первый.
Лекция 3 Теплоемкость. Второе начало термодинамики.
ВТОРОЕ И ТРЕТЬЕ НАЧАЛА ТЕРМОДИНАМИКИ Энтропия. Приведенная теплота. Энтропия Из рассмотренного цикла Карно видно, что равны между собой отношения теплот.
Статистические распределения (продолжение) Лекция 10 Весна 2012 г.
ХИМИЧЕСКОЕ РАВНОВЕСИЕ. Признаки установления химического равновесия : 1. Неизменность во времени – если система находится в состоянии равновесия, то ее.
Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам в газе. Тема урока:
Применение первого закона термодинамики к изопроцессам. Урок физики в 10 классе.
Транксрипт:

1 Второй закон термодинамики. Энтропия Энтропия: основные определения Изменение энтропии в различных процессах: изохорном изобарном изотермическом адиабатическом Энтропия фазового перехода: правило Трутона

2 Самопроизвольные процессы Процессы, которые совершаются в системе без вмешательства со стороны окружающей среды называются самопроизвольными. В этих процессах всегда уменьшается внутренняя энергия системы. Энергия передается в окружающую среду в виде теплоты или работы. В самопроизвольном процессе работа превращается в теплоту Эндотермические процессы тоже могут быть самопроизвольными. Они производят работу за счет теплоты окружающей среды

3 Самопроизвольные процессы Рассеяние энергии

4 Второй закон термодинамики Определение Невозможно протекание самопроизвольного процесса, в котором теплота превращается в работу. Только превращение работы в теплоту может быть единственным результатом самопроизвольного процесса. (Томсон)

5 Несамопроизвольные процессы Процессы, которые не могут совершаться в системе без вмешательства со стороны окружающей среды называются несамопроизвольными. Для этих процессов необходима передача энергии из окружающей среды в виде теплоты или работы В каких системах могут протекать несамопроизвольные процессы: –открытых –закрытых –изолированных ? Приведите примеры несамопроизвольных процессов

6 Обратимые процессы Если после протекания процесса систему и окружающую среду можно вернуть в прежнее состояние то процессы называются обратимыми. Пример: расширение газа в сосуде без трения. В условиях трения для перехода в прежнее состояние необходимо затратить работу, которая приведет к изменению энергии окружающей среду и процесс будет необратимым. Работа, совершаемая при обратимом процессе – максимальная. работа теплота

7 Второй закон термодинамики Определение Невозможно проведение процесса, в котором вся теплота поглощенная из окружающей среды полностью превращается в работу (вечный двигатель второго рода). (Оствальд) Источник тепла двигатель работа Поток энергии теплота

8 Необратимые процессы Если после протекания процесса системы и окружающую среду нельзя вернуть в прежнее состояние без изменений, то такие процессы называются необратимыми. Во всех необратимых процессах происходит превращение работы в теплоту. Во всех необратимых процессах происходит выравнивание термодинамических параметров (Т, Р). Система переходит в состояние равновесия. Пример: рассеяние энергии в окружающую среду в виде теплового движения (хаотичное рассеяние энергии) Еще примеры?

9 Типы процессов Название процесса Определение Самопроизвольный Несамопроизвольный Необратимый Процесс, который совершается в системе без вмешательства со стороны окружающей среды Обратимый Процесс, для проведения которого необходимо вмешательство со стороны окружающей среды Процесс, после проведения которого систему и окружающую среду нельзя вернуть в прежнее состояние без изменений Процесс, после проведения которого система и окружающая среда возвращается в первоначальное состояние без изменений в системе и окружающей среде

10 Принцип Каратеодори Для прямого процесса: Q= U + W1 Для обратного процесса: U = W2 Q = (W1 + W2) > 0 В термодинамической системе могут быть такие состояния, которых невозможно достигнуть адиабатическим путем (без передачи теплоты) Процесс 2 невозможен (из определения второго закона термодинамики) Сообщение теплоты к системе меняет энтропию S = f(Q) U Q>0 Q=0 U1 U2 1 2

11 Энтропия Энтропия – это функция беспорядка в системе. Во втором законе термодинамики энтропия используется для определения самопроизвольных процессов. Самопроизвольный процесс всегда сопровождается рассеянием энергии в окружающую среду и повышением энтропии.

12 Зависимость энтропии от теплоты для обратимых процессов Разделим на Т:

13 Термодинамическое определение энтропии В результате физического или химического процесса всегда происходит изменение энтропии. Изменение энтропии показывает какое количество энергии беспорядочно рассеивается в окружающую среду в виде теплоты (при определенной температуре). обр

14 Изменение энтропии в необратимых и обратимых процессах Энтропия является критерием возможности и направленности протекания процессов. Энтропия является критерием состояния термодинамического равновесия. В обратимом (равновесном) процессе: ΔS = 0 Энтропия в изолированной системе, при протекании самопроизвольного процесса всегда возрастает. Необратимый процесс является самопроизвольным и поэтому приводит к увеличению энтропии. ΔS 0

15 Неравенство Клаузиуса Энтропия является критерием самопроизвольного изменения в системе: Для необратимого процесса энтропия окружающей среды: Для любого процесса: Для изолированной системы:

16 Применение неравенства Клаузиуса Пример 1. Неравновесный адиабатический процесс Для любого типа самопроизвольного процесса энтропия возрастает. Теплота не передается в окружающую среду

17 Применение неравенства Клаузиуса Пример 2. Необратимый изотермический процесс (Т = const) если газ расширяется самопроизвольно в вакуум:

18 Применение неравенства Клаузиуса Пример 3. Необратимое охлаждение источник энергии: холодильник: Общее изменение энтропии: Вывод: необратимое охлаждение является самопроизвольным процессом Источник энергии холодильник

19 Второй закон термодинамики Определение Невозможно проведение процесса, в котором теплота передается от холодного тела к горячему. Только передача теплоты от горячего тела к холодному может быть единственным результатом самопроизвольного процесса. (Клаузиус)

20 Расчет энтропии Термодинамическое определение энтропии: Энтропия каждого состояния системы относительно какого-либо выбранного состояния определяется: Энтропия – функция состояния. Поэтому можно рассчитать изменение энтропии между начальным и конечным состоянием системы. обр

21 Изменение энтропии в различных процессах с идеальным газом

22 Изменение энтропии в изотермическом процессе Или:

23 Изменение энтропии в изохорном процессе

24 Изменение энтропии в изобарном процессе

25 Изменение энтропии в адиабатическом процессе

26 Изменение энтропии при фазовом переходе Процессы: кристаллизация кипение испарение плавление конденсация сублимация возгонка Чему равно изменение энтропии? исп плав исп

27 Правило Трутона При постоянном давлении: Изменение молярной энтропии: Правило Трутона Экзотермические процессы ( ): - кристаллизация - конденсация - сублимация Эндотермические процессы ( ): - плавление - испарение - возгонка

28 Второй закон термодинамики Зависимость энтропии от температуры Изменение энтропии при диффузии газов исп плав исп

29 Зависимость энтропии от температуры P = const: если C p = const:

30 Зависимость энтропии от температуры если C v = const: V = const:

31 Изменение энтропии в сложном процессе исп плав исп твердоегаз плависп жидкое кипение плавление

32 Изменение энтропии при диффузии газов Диффузия – это самопроизвольный необратимый процесс X i – мольная доля

33 Второй закон термодинамики Обратимые процессы: цикл Карно Тепловые машины адиабата объем изотерма давление

34 Энтропия – функция состояния Энтропия не зависит от пути процесса, а зависит от начального и конечного состояния системы. Энтропия кругового процесса (цикла) равна 0. начальное состояние конечное состояние давление объем

35 Цикл Карно 1. Обратимое изотермическое расширение от A до B при T h. ΔS = Q h /T h. Q c 0 2. Обратимое адиабатическое расширение от B до C. ΔS = 0. T h T c 3. Обратимое изотермическое сжатие от C до D при Tc. ΔS = Qc/Tc. Qc < 0 4. Обратимое адиабатическое сжатие от D до A. ΔS = 0. T c T h адиабата объем изотерма давление

36 Общее изменение энтропии

37 Применение цикла Карно Каждый обратимый процесс может быть представлен как несколько циклов Карно. давление объем не входит в расчет

38 Коэффициент полезного действия тепловой машины холодильник Источник энергии двигатель

39 Теорема Нернста Изменение энтропии при любом физическом или химическом процессе стремится к нулю, если температура стремится к нулю: ΔS 0 при T 0. Все идеальные кристаллы имеют энтропию равную нулю при T = 0.

40 Третий закон термодинамики Если энтропию каждого элемента в его наиболее стабильном состоянии принять равной нулю при T = 0, тогда каждое вещество обладает положительной энтропией, которая при T = 0 становится равной нулю.

41 Энтропия химической реакции Стандартная энтропия химической реакции ΔS° - это разность между суммой молярных энтропий продуктов и реагентов в стандартном состоянии (с учетом стехиометрических коэффициентов): продуктыреагенты

42 Расчет энтропии Гальванический элемент продукты Химическая реакция Расчет реагентыпродукты реагенты

43 Критерий самопроизвольного процесса В изолированной системе при постоянном объеме и постоянной внутренней энергии энтропия увеличивается если процесс самопроизвольный. Если энтропия и объем системы постоянны, внутренняя энергия уменьшается в самопроизвольном процессе. Если энтропия системы постоянна, то должно быть увеличение энтропии в окружающей среде, которое достигается при уменьшении энергии системы, т.к. энергия системы передается в окружающую среду в виде теплоты. V, U = const: Неравенство Клаузиуса: V, S = const:

44 Критерий самопроизвольного процесса Энтропия системы при постоянном давлении и при постоянной энтальпии увеличивается (при этом не происходит изменения энтропии в окружающей среде) Если энтропия и давление системы постоянны, то энтальпия системы уменьшается (при этом происходит увеличение энтальпии в окружающей среде, которое достигается при увеличении энергии системы, т.к. энергия системы передается из окружающей среды в систему в виде теплоты. ) Неравенство Клаузиуса: P, H = const: P, S = const: