Уравнения Ричардсона и энергия связи куперовской пары В. В. Погосов, Институт теоретической и прикладной электродинамики РАН, Москва M. Combescot, Institut.

Презентация:



Advertisements
Похожие презентации
Уравнения Ричардсона и энергия связи куперовской пары В. В. Погосов, Институт теоретической и прикладной электродинамики РАН, Москва M. Combescot, Institut.
Advertisements

Об энергии и количестве куперовских пар в теории БКШ В. Погосов, Институт теоретической и прикладной электродинамики РАН M. Combescot, Institut des NanoSciences.
Бозе-эйнштейновская конденсация. Возбуждения в неидеальном бозе-газе. Сверхтекучесть. Критерий сверхтекучести Ландау 1.8. Конденсация Бозе – Эйнштейна.
Куперовские пары. Энергия связи и радиус. Теория БКШ. Гамильтониан БКШ. Волновая функция БКШ Куперовские пары.
Модель свободных электронов, также известна как модель Зоммерфельда или модель Друде-Зоммерфельда, простая квантовая модель поведения валентных электронов.
Поверхностная сверхпроводимость. Контактные явления. Тонкие пленки Размерные эффекты.
Основные экспериментальные факты для сверхпроводников. Обзор феноменологических теорий сверхпроводимости. Теория Лондонов. Природа эффективного притяжения.
Нефононные механизмы спаривания носителей заряда в ВТСП. Спиновые мешки Шриффера и модель RVB Андерсона. Многозонная модель Эмери 2.9. Нефононные механизмы.
Эффект Померанчука. Три сверхтекучие фазы. Теоретические представления. Р-спаривание Изотоп 3 He.
7. Взаимодействие ускоренных ионов с веществом (часть 2) 2. Торможение ускоренных ионов в неупругих взаимодействиях 2.1. Электронная тормозная способность.
Точные решения в одномерной и двумерной моделях Изинга. Отсутствие фазового перехода в одномерном случае 1.3. Точное решение модели Изинга.
Образовательный семинар для аспирантов и студентов, ИФМ РАН, 24 февраля 2011 Квантово-размерные эффекты и зарождение сверхпроводимости в гибридных структурах.
Лекции 3,4 Эффект Джозефсона. Разность фаз параметра порядка 1. Конденсат куперовских пар в СП-ке описывается единой комплексной волновой функцией – параметром.
ОПИСАНИЕ ЭЛЛИПТИЧЕСКИХ ПОТОКОВ В РЕДЖЕОННОЙ ТЕОРИИ К.Г.Боресков, А.Б.Кайдалов, О.В.Канчели ИТЭФ, Москва Введение Модель Оценки Качественное поведение Предложен.
Модель сильной связи. Гамильтонова матрица. Модель сильной связи без взаимодействия 1.8. Ферми-системы. Модель сильной связи.
Импульсное представление. Распределение по импульсам. Возврат в координатное представление 1.5. Потенциальная яма в импульсном представлении.
О законе эволюции температуры в холодной сильно-неидеальной плазме Ю. В. Д у м и н Институт земного магнетизма, ионосферы и распространения радиоволн им.
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.
Спиновый парамагнетизм в теории Стонера. Переход металл – диэлектрик. Модель Хаббарда. Модель Мотта 1.7. Зонная теория ферромагнетизма.
1 Гамильтониан многоэлектронного атома. 2 Атом водорода (один электрон) Для атома водорода (с зарядом ядра, равным +e) и водородоподобных ионов (с зарядом.
Транксрипт:

Уравнения Ричардсона и энергия связи куперовской пары В. В. Погосов, Институт теоретической и прикладной электродинамики РАН, Москва M. Combescot, Institut des NanoSciences de Paris, Universite Pierre et Marie Curie & CNRS, Paris W. V. Pogosov, M. Combescot, and M. Crouzeix, PRB 81, (2010); W. V. Pogosov, M. Combescot, Письма в ЖЭТФ 92, 534 (2010).

Мотивация/Введение Решение уравнений Ричардсона в разреженном пределе Обобщение теории БКШ Выводы План

Мотивация/Введение Проблема перехода БЭК-БКШ (ультрахолодные газы, ВТСП, экситоны) -Предел локальных пар поверхность Ферми размыта - Предел БКШ плотность пар очень велика, есть поверхность Ферми - Как описать переход? Проблема осуждалась еще Шриффером в связи с переходом от двухчастичной модели Купера к многочастичной модели БКШ. Ω c 2ω = Ω ? переход

Предыдущие работы по density-induced кроссоверу Модель Иглса (1969): «сверхпроводящие полупроводники» Обобщение формализма БКШ - Уравнение на «щель» - Уравнение на химический потенциал Адекватное описание обоих пределов См. также: N. Andrenacci et al. (1999). A. Leggett (1980): ферми-газы – кроссовер за счет изменения силы притяжения

Задача Купера и теория БКШ: ключевые моменты Задача Купера Уравнение Шрёдингера: Уравнение на собственные значения: Энергия связи пары: Ω !

БКШ Энергия сверхпроводящего состояния: Сверхпроводящая щель: Утверждение Шриффера: пары перекрыты так сильно, что концепция изолированной пары не имеет смысла (has a little meaning) - вводятся «виртуальные» пары с энергией = щели - сконцентрированы вблизи поверхности Ферми - отличаются от «сверхтекучих» пар из волновой функции БКШ - их число гораздо меньше числа пар в слое - вводятся не ab initio, а для понимания результата, «руками» В настоящее время под куперовскими парами в БКШ обычно понимаются как раз виртуальные пары (см., например, Walecka- Fetter) c 2ω = Ω !

Мотивация: - Установить возможную связь между «куперовскими парами» в обоих пределах - Попытаться описать переход, выходя за рамки обобщенной теории БКШ Альтернативное представление : c 2ω = Ω

На примере двух пар Подход Ричардсона Ω Мысленный эксперимент: начнем добавлять пары в слой, пока он не заполнится наполовину R.W. Richardson (1963) Волновая функция основного состояния:

используется тождество (расцепление): Уравнения Ричардсона для двух пар

Уравнения Ричардсона для трех пар - неявная зависимость от N ! - многочастичная классическая задача, (имеется электростатическая аналогия)

Решение уравнений с помощью разложения Разложение сумм в разреженном пределе где Вводим безразмерную переменную:

Приведенные уравнения Ричардсона для двух пар: малый параметр В первом приближении по : (невзаимодействующие пары)

Следующий порядок по : Энергия основного состояния: …переписываем: добавление 1-ой пары «выедание» энергии связи пары (аналогично экситонам)

Три пары В первом приближении: Во втором приближении: и т.д. для большего количества пар

Четное число пар (общий случай) I. В первом приближении Уравнения Ричардсона: умножаем на a i и складываем II. Во втором приближении (сумма уравнений Ричардсона):

Энергия основного состояния Уменьшение энергии связи пары из-за принципа Паули Полное совпадение с результатами БКШ при экстраполяции в «полузаполненную» конфигурацию!

Second order term in the expansion still in N(N-1) so that it vanishes in the large sample limit M. Crouzeix & M. Combescot (unpublished) Similar to Frenkel excitons same one-to-one coupling …

Конфигурация с несимметричным расположением слоя с притяжением (произвольное число пар в слое) Обобщение БКШ c 2ω = Ω

Уравнение на щель

Вычисление энергии конденсации Совпадение с результатами решения уравнений Ричардсона (N >> 1)

Подход можно обобщить и на «разреженный» предел Добавляется уравнение на химпотенциал: Выражения для энергии основного состояния и сохраняются, но меняется смысл энергия возбужденного состояния: слабая сингулярность

Спектр возбуждений из уравнений Ричардсона - разрыв пары означает блокировку двух состояний («соловьевская блокировка»), что ведет к модификации энергии оставшихся пар Начальное состояние: N пар Конечное состояние: (N - 1) пара + 1 неспаренный электрон Уравнения Ричардсона:

Разреженный предел: Разница энергий: - конкуренция между кинетической энергией «дефекта» и изменением энергий оставшихся пар! (!) щель типа БКШ

На самом деле, должно выполняться неравенство: -Если не выполняется: Итак, - в разреженном пределе выгодно поместить «дефект» как можно ниже. Энергия возбуждения контролируется энергией связи пары. - в плотном пределе выгодно поместить «дефект» повыше. Появляется щель типа БКШ. Поведение системы становится коллективным. Щель типа БКШ – это многочастичный отклик системы.

- Предложена интерпретация результатов теории БКШ в терминах «сверхтекучих», а не «виртуальных» пар. Преимуществом этого представления является простая связь между разреженным и плотным режимами. - Предложен новый метод аналитического решения уравнений Ричардсона в разреженном пределе пар. Несмотря на это ограничение, полученное выражение для энергии основного состояния совпадает с результатом теории БКШ в плотном режиме. Выводы