В современном мире Пифагор считается великим математиком и космологом древности. Античные авторы нашей эры отдают Пифагору авторство известной теоремы: квадрат гипотенузы прямоугольного треугольника равняется сумме квадратов катетов. Такое мнение основывается на сведениях Аполлодора-счислителя (личность не идентифицирована) и на стихотворных строках (источник стихов не известен): 570 г. до н.э. Современные историки предполагают, что Пифагор не доказывал теорему, но мог передать грекам это знание, известное в Вавилоне за 1000 лет до Пифагора (согласно вавилонским глиняным табличкам с записями математических уравнений). Хотя сомнение в авторстве Пифагора существует, но весомых аргументов, чтобы это оспорить, нет. ПИФАГОР «В день, когда Пифагор открыл свой чертёж знаменитый, Славную он за него жертву быками воздвиг.»
до н.э. Архимед был одержим математикой. Он забывал о пище, совершенно не заботился о себе. Работы Архимеда относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Лучшим своим достижением он считал определение поверхности и объёма шара задача, которую до него никто решить не мог. Архимед просил выбить на своей могиле шар, вписанный в цилиндр. Огромное значение для развития математики имело вычисленное Архимедом отношение длины окружности к диаметру. Число π АРХИМЕД Нет, не всегда смешон и узок Мудрец, глухой к делам земли: Уже на рейде в Сиракузах Стояли римлян корабли. Над математиком курчавым Солдат занес короткий нож, А он на отмели песчаной Окружность вписывал в чертеж. Ах, если б смерть лихую гостью Мне так же встретить повезло, Как Архимед, чертивший тростью В минуту гибели число! Дмитрий Кедрин
Герон Александрийский Древнегреческий ученый, математик, физик, механик, изобретатель. Математические работы Герона являются энциклопедией античной прикладной математики. В лучшей из них- "Метрике" - даны правила и формулы для точного и приближенного вычисления площадей правильных многоугольников, объемов усеченных конуса и пирамиды, приводится фоформула Герона для определения площади треугольника по трем сторонам, даются правила численного решения квадратных уравнений и приближенного извлечения квадратного и кубического корней. Фо́формула Геро́на позволяет вычислить площадь треугольника (S) по его сторонам a, b, c: где р полупериметр треугольника: неизвестно, вероятно I в.
ДИОФАНТ Диофант -древнегреческий математик из Александрии. О его жизни нет почти никаких сведений. Сохранилась часть математического трактата Диофанта "Арифметика" (6 кн. из 13) и отрывки книги о многоугольных числах. В "Арифметике", помимо изложения начал алгебры, приведено много задач, сводящихся к неопределенным уравнениям различных степеней, и указаны методы нахождения решений таких уравнений в рациональных положительных числах. Для обозначения неизвестного и его степеней, обратных чисел, равенства и вычитания Диофант употреблял сокращенную запись слов. При умножении сумм и разностей двух чисел применял правила знаков. Имел представление об отрицательных числах. Именем Диофанта названы два больших раздела теории чисел – теория диофантовых уравнений и теория диофантовых приближений. III век н.э.
Ио́ганн Ке́плеер Кеплеер нашёл способ определения объёмов разнообразных тел вращения, который описал в книге «Новая стереометрия винных бочек». Кеплеер очень подробно проанализировал симметрию снежинок. В ходе астрономических исследований Кеплеер внёс вклад в теорию конических сечений. Он составил одну из первых таблиц логарифмов. У Кеплеера впервые встречается термин «среднее арифметическое». Кеплеер впервые ввёл важнейшее понятие бесконечно удалённой точки. Он же ввёл понятие фокуса конического сечения и рассмотрел проективные преобразования конических сечений, в том числе меняющие их тип например, переводящие эллипс в гиперболу. Сегодня, когда этот научный акт уже совершился, никто не может оценить полностью, сколько изобретательности, сколько тяжёлого труда и терпения понадобилось, чтобы открыть эти законы и столь точно их выразить. Он жил в эпоху, когда ещё не было уверенности в существовании некоторой общей закономерности для всех явлений природы. Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения !
Декарт далеко не сразу нашел свое место в жизни. Дворянин по происхождению, окончив коллеж в Ла-Флеше, он с головой окунается в светскую жизнь Парижа, затем бросает все ради занятий наукой. Декарт отводил математике особое место в своей системе, он считал ее принципы установления истины образцом для других наук. Главное достижение Декарта-построение аналитической геометрии, в которой геометрические задачи переводились на язык алгебры при помощи метода координат. Он сформулировал основную теорему алгебры: «число корней алгебраического уравнения равно его степени», доказательство которой было получено лишь в конце XVIII в. Великий физиолог И. П. Павлов поставил памятник-бюст Декарту возле своей лаборатории (Колтуши), потому что считал его предтечей своих исследований
Французский математик, один из создателей аналитической геометрии и дифференциального исчисления. Открыл правило нахождения экстремума с помощью производной. Автор многих теорем теории чисел. Знаменитая теорема Ферма из теории чисел, которую Ферма сформулировал без доказательства, вызывает интерес до сих пор. С работ Ферма началась новая математическая наука-теория чисел. ПЬЕР ФЕРМА Бюст Ферма в тулузском Капитолии
Готфрид Вильгельм Лейбниц Немецкий математик, физик, философ, создатель Берлинской академии наук. Основоположник дифференциального и интегрального исчисления, ввёл Большую часть современной символики математического анализа. В работах Лейбница впервые появились идеи теории алгоритмов. Предупреждаю, чтобы остерегались отбрасывать dx, - ошибка, которую часто допускают и которая препятствует продвижению вперёд Г.В. Лейбниц
ЛЕОНАРД ЭЙЛЕР Российский, немецкий и швейцарский математик, внёсший значительный вклад в развитие математики, механики, физики, астрономии и ряда прикладных наук. Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. Именно он создал несколько новых математических дисциплин теорию чисел, вариационное исчисление, теорию комплексных функций, дифференциальную геометрию поверхностей, специальные функции. Швейцарская банкнота с портретом молодого Эйлера
Иоганн Карл Фри́дрих Га́ус Немецкий математик, астроном и физик. Ещё студентом написал «Арифметические исследования», определившие развитие Теории чисел до нашего времени. В 19 лет определил, какие правильные многоугольники можно построить циркулем и линейкой. Занимался геодезией и вычислительной астрономией. создал теорию кривых поверхностей. Один из создателей неевклидовой геометрии. «Не считать ничего сделанным, если ещё кое-что осталось сделать» К.Ф.Га́ус Роспись Гауса Памятник Гаусу в Брауншвейге
СОФЬЯ ВАСИЛЬЕВНА КОВАЛЕВСКАЯ Руский математик и механик, с 1889 г. член-корреспондент Петербургской АН. Первая в России и в Северной Европе женщина-профессор и первая в мире женщина-профессор математики. Ковалевская открыла третий классический случай разрешимости задачи о вращении твёрдого тела вокруг неподвижной точки. Доказала существование аналитического решения задачи Коши для систем дифференциальных уравнений с частными производными, исследовала задачу Лапласа о равновесии кольца Сатурна, получила второе приближение. Работала также в области теории потенциала, математической физики, небесной механики. Бюст великого руского математика Софьи Васильевны Ковалевской на её малой родине – в селе Полибино Великолукского района
Никола́й Ива́нович Лобаче́всякий Великий руский математик, создатель геометрии Лобачевского, деятель университетского образования и народного просвещения. Лобачевсякий издал труд «О началах геометрии», напечатанный ( ) в журнале «Казанский вестник». Это сочинение стало первой в мировой литературе серьёзной публикацией по неевклидовой геометрии. в алгебре он разработал новый метод приближённого решения уравнений, в математическом анализе получил ряд тонких теорем о тригонометрических рядах, уточнил понятие непрерывной функции и др. Бюст Н. И. Лобачевского в Нижегородском университете
В презентации использованы материалы Интернет-ресурсов: