Понятие положительной скалярной величины и ее измерения Величины одного рода или однородные величины - это величины, которые выражают одно и тоже свойство.

Презентация:



Advertisements
Похожие презентации
Понятие положительной скалярной величины и ее измерения Величины одного рода или однородные величины - это величины, которые выражают одно и тоже свойство.
Advertisements

Деление натуральных чисел и его свойства. Повторение 700 :10 = :100 = ·10 = ·10 = :1000 = ·100 = :1000.
Площадь многоугольника Площадь многоугольника 1. Понятие площади многоугольника. 2. Площадь квадрата. 3. Площадь прямоугольника Автор : ученик 8 класса.
4.4 Прямая и обратная пропорциональные зависимости Школа 2100 school2100.ru Презентация для учебника Козлова С. А., Рубин А. Г. «Математика, 6 класс. Ч.
ТЕМА СТОИМОСТЬ ВОПРОСА Натуральные числа Сложение и вычитание Умножение и деление Площади и объемы Формулы.
Площади многоугольников
Презентацию подготовил ученик 9 класса «В» Азимов Марат.
геометрия 9 1. Измерение площадей. Площадь прямоугольника Урок 1.
Элементы векторной алгебры Кафедра высшей математики ТПУ Лектор: доцент Тарбокова Татьяна В асильевна.
Измерение длин отрезков Урок 7. I. Математический диктант.
Дроби Дробь – это есть частное, делимое – числитель дроби, делитель – знаменатель. дроби. Любое натуральное число можно записать в виде дроби с любым натуральным.
Геометрическая фигура называется простой, если ее можно разбить на конечное число плоских треугольников. Рассмотрим геометрическую фигуру F. F Проведя.
Деление – это действие, обратное сложению вычитанию умножению.
Площадь многоугольника положительная величина, численное значение которой обладает такими свойствами (аксиомами площади): 1. Площадь квадрата со стороной,
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Куплено 15 кг яблок на приготовление варенья израсходовали купленных яблок. Сколько килограммов яблок было израсходовано на варенье? Сколько килограммов.
Переместительное свойство сложения с помощью букв записывается так.
ДРУЖОКДРУЖОК правила по математике для начальных классов.
В данной презентации представлены основные правила по математике для учащихся начальных классов. Надеемся, что изучение математики для вас станет более.
Понятие вектора Отрезок, для которого указано, какая из его граничных точек считается началом, а какая – концом, называется направленным отрезком или.
Транксрипт:

Понятие положительной скалярной величины и ее измерения Величины одного рода или однородные величины - это величины, которые выражают одно и тоже свойство объектов. Пример: длина стола, длина комнаты- это величины одного рода.

Основные положения: 1) Любые две величины сравнимы: они либо равны, либо одна меньше другой. Имеют место отношения "равно","меньше" и "больше",и для любых величин А и В справедливо одно и только одно из отношений: А B. Пример: масса яблока меньше массы арбуза. 2) Отношение "меньше" для однородных величин транзитивно: если A<B и B<C, то A<C. Пример: если масса яблока М1 меньше массы яблока М2,и масса яблока М2 меньше массы яблока М3,то масса яблока М1 меньше массы яблока М3. 3) Величины одного рода можно складывать, в результате сложения получается величина того же рода: С=А+В, С-сумма величин А и В. Сложение величин коммутативно и ассоциативно. Пример: если А-масса арбуза, В-масса яблока, то С=А+В- это масса арбуза и яблока.

4) Величины одного рода можно вычитать, получая в результате величину того же рода. Определяют вычитание через сложение. Разностью величин А и В называется такая величина С=А-В, что А=В+С. Разность величин А и В существует, если А>В. Пример: если А-длина отрезка a, В-длина отрезка b, то С=А-В- это длина отрезка c. а c b

5) Величину можно умножать на положительное действительное число, в результате получают величину того же рода. Для любой величины А и любого положительного числа х существует единственная величина В= х х А, В- произведение величины А на число х. Пример: если А-масса одного яблока, то умножив А на число х=3,получим величину В=3 х А - массу трех яблок.

6) Величины одного рода можно делить, получая в результате число. Определяют деление через умножение величины на число. Частным величин А и В называется такое положительное действительное число х = А:В, что А = х х В. Пример: если А-длина отрезка а, В-длина отрезка b и отрезок А состоит из 4-х отрезков равных b, то А:В=4,т.к А = 4 х В. a b

Величины, как свойства объектов, обладают еще одной особенностью- их можно оценивать количественно. Выбирают величину, которую называют единицей измерения-Е. Если задана величина А и выбрана единица величины Е, то измерить величину А-это значит найти такое положительное действительное число х, что А= х х Е. Число х- численное значение величины А при единице величины Е. Оно показывает, во сколько раз величина А больше(меньше) величины Е, принятой за единицу измерения.

Если А = х х Е, то число х называют мерой величины А при единице Е и пишут х= m E (А) Пример: А-длина отрезка а, Е-длина отрезка b, то А=4 х Е.число 4-это мера длины А при единице длины Е. a b

Величина, которая определяется одним численным значением, называется скалярной величиной. Положительная скалярная величина - скалярная величина, которая при выбранной единице измерения принимает только положительные численные значения. Пример: площадь, объем, масса, время, стоимость и количество товара и др. Если величины выражают разные свойства объекта, то их называют величинами разного рода или разнородными величинами. Пример: длина и масса-это разнородные величины.

В ТЕОРИЮ

a)Персики дороже яблок. b)Шкаф тяжелее стула. c)Катя выше Гали. Проверить себя Далее 1. О каких величинах идет речь в следующих предложениях:

Положительная скалярная величина. а) Персики дороже яблок- цена. б) Шкаф тяжелее стула- масса. в) Катя выше Гали- длина.

2. Какие величины можно сравнить между собой: а) 1200 м; б) 20 штук в) 320 кг г) 12 мин 1) 2 ц 2) 2 км 400 м 3) 20 пар 4) 1 час Далее Проверить себя

а) 1200 м; б) 20 штук в) 320 кг г) 12 мин 1) 2 км 400 м 2) 20 пар 3) 2 ц 4) 1 час

3. Назовите объект, его величину, численное значение и единицу измерения величины: а)В сумке 5 кг апельсинов. б)Глубина бассейна 2 м. в)Площадь участка 8 соток. г)Рост мальчика 1 м 70 см. а) В сумке 5 кг. апельсинов. б) Глубина бассейна 2 м. в) Площадь участка 8 соток. г) Рост мальчика 1 м 70 см. Проверить себя Далее

а) объект- апельсины, величина -масса, число 5- численное значение, единица измерения- килограмм; б) объект -глубина бассейна, величина-длина, число 2- численное значение, единица измерения- метр; в) объект -участок, величина - площадь, число 8- численное значение, единица измерения- сотка; г) объект -рост мальчика, величина - длина, число 1 м 70 см -численное значение, единица измерения м и см.

Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности Понятие: "отрезок состоит из отрезков". Определение. Считают, что отрезок х состоит из отрезков х 1,х 2,…х п, если он является их объединением и никакие два из них не имеют общих внутренних точек, хотя и могут иметь общие концы: отрезок х разбит на отрезки х 1,х 2,…х п и пишут х= х 1 +х 2 +…+х п Пусть задан отрезок х, его длина обозначим Х, е - единичный отрезок, Е-длина отрезка.

Определение. Если отрезок х состоит из отрезков, каждый из которых равен единичному отрезку е, то число а называют численным значением длины Х данного отрезка при единице длины Е. Пример: х- отрезок, состоит из 6 отрезков, равных отрезку е- единичный отрезок; Е-длина единичного отрезка; Х-длина отрезка х, то Х=6Е или 6=m Е (Х). а ее 1 е 1

Из определения получаем, что НАТУРАЛЬНОЕ ЧИСЛО как результат измерения длины отрезка (или мера длины отрезка),показывает, из скольких единичных отрезков состоит отрезок, длина которого измеряется. Замечания: 1. При переходе к другой единице длины численное значение длины отрезка изменяется, хотя сам отрезок остается неизменным. Пример: если в качестве единицы длины выбрать е 1,то мера длины отрезка х=3. Записывается: Х=3 х Е 1 или m E1 (Х)=3. 2. Если отрезок х состоит из а отрезков, равных е, а отрезок e состоит из b отрезков, равных е, то а=b, тогда и только тогда, когда отрезки х=у. Пример: В записи 3 см 2 число 3 означает, что фигура F состоит из трех единичных квадратов с площадью равной квадратному сантиметру.

Смысл суммы натуральных чисел, полученных в результате измерения величин. Теорема. Если отрезок х состоит из отрезков у и z и длины отрезков у и z выражаются натуральными числами, то мера длины отрезка х равна сумме мер длин его частей. Сумму натуральных чисел а и b можно рассматривать как меру длины отрезка х, состоящего из отрезков у и z, мерами длин которых являются числа а и b. а+b=m E (Y)+ m E (Z) = m E (Y+Z)=m E (Х)

Теорема. Если отрезок х состоит из отрезков у и z и длина отрезков х и у выражаются натуральными числами, то мера длины отрезка z равна разности мер длин отрезков х и у. Разность натуральных чисел а и b можно рассматривать как меру длины такого отрезка z=x-y, что z+y=x, если мера длины отрезка х равна а, мера отрезка у равна b. а-b=m E (Х) - m E (Y)= m E (X-Y)= m E (Z) Смысл разности натуральных чисел, полученных в результате измерения величин.

В ТЕОРИЮ

1. Какой смысл имеет натуральное число 5, если оно получается в результате: а) Длины отрезка; б) Площади фигуры; в) Массы тела? Проверить себя Далее

а) мера длины отрезка; б) фигура состоит из 5 единичных квадратов; в) численное значение массы.

2. Объясните, почему следующая задача решается при помощи сложения: Когда со стола взяли 3 книги, то на нем осталась 1 книга. Сколько книг лежало на столе первоначально? Проверить себя Далее

3. Объясните, почему следующая задача решается при помощи вычитания: С двух участков собрали 8 пучков укропа. Сколько пучков укропа собрали с первого участка, если со второго участка собрали 5 пучков? Проверить себя Далее

4. Обоснуйте выбор действия при решении задачи: Купили 3 кг яблок, а апельсинов на 2 кг больше. Сколько килограммов апельсинов купили? Проверить себя Далее

Смысл произведения и частного натуральных чисел, полученных в результате измерения величин Умножение и деление натуральных чисел- мер величин связано с переходом от одной единицы величины к другой в процессе измерения одной и той же величины.

Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е состоит из b отрезков, длина которых равна Е 1, то мера длины отрезка х при единице длины Е 2 равна а х b. Если натуральное число а- мера длины отрезка х при единице длины Е, натуральное число b-мера длины Е при единице длины Е1, то произведение а х b-это мера длины отрезка х при единице длины Е1. а х b=т Е (Х) х m E1 (E)=m E1 (X) Смысл произведения натуральных чисел, полученных в результате измерения величин.

Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, отрезок длины Е 1 состоит из b отрезков длины Е, то мера длины отрезка х при единице длины Е 1 равна а:b. Если натуральное число а- мера длины отрезка х при единице длины Е, натуральное число b- мера новой единицы длины Е 1 при единице длины Е, то частное а:b- это мера длины отрезка х при единице длины Е 1. а:b= т Е (Х):m E (E 1 )=m E1 (X) Смысл частного натуральных чисел, полученных в результате измерения величин.

2. Обосновать выбор действия при решении задачи. В одной коробке 6 ручек. Сколько ручек в трех таких коробках? Решение. В задаче идет речь о количестве ручек, которое сначала измерено коробками и известно численное значение этой величины при указанной единице. Требуется найти численное значение этой же величины при новой единице - ручка, причем известно, что коробка – это 6 ручек. Тогда 3 кор.=3 х кор.=3 х (6 руч.)=3 х (6 х руч.)=(3 х 6)руч. Таким образом, задача решается при помощи действия умножения, поскольку в ней при измерении осуществляется переход от одной единицы величины (коробка) к другой - ручка.

3. Обосновать выбор действия при решении задачи. Из 12 м ткани сшили платья, расходуя на каждое по 4 м. Сколько платьев сшили? Решение: В задаче рассматривается длина ткани, которая измерена сначала при помощи единицы длины метр, и известно численное значение заданной величины. Требуется найти численное значение той же длины при условии, что она измеряется новой единицей –платьем, причем известно, что платье-это 4 м,откуда метр-это 1/4 платья: 12 м=12 х м=12 х (1/4 пл.)=(12 х 1/4)пл.=(12:4)пл.=3 пл.

4. Обосновать выбор действия при решении задачи. Купили 3 кг моркови, а картофеля в 2 раза больше. Сколько килограммов картофеля купили? Решение: В задаче рассматривается масса моркови и масса картофеля, причем численное значение первой массы известно, а численное значение второй надо найти, зная, что она в 2 раза больше первой. Масса картофеля складывается из двух масс по 3 кг,численное значение массы картофеля можно найти, умножив 3 на 2. Найдя значение выражения 3 х 2,получим ответ на вопрос задачи. 3 кг ? М. К.К.