КВАДРАТНЫЕ УРАВНЕНИЯ Основные понятия, связанные с квадратными уравнениями Лебедева Е.В., учитель математики МБОУ лицей имени В.Г. Сизова.

Презентация:



Advertisements
Похожие презентации
Автор работы : Левшина Мария Александровна Учитель математики МБОУ гимназии 1 Г. Липецк.
Advertisements

Квадратное уравнение и его корни Определение квадратного уравнения. Определение квадратного уравнения. Неполные квадратные уравнения. Неполные квадратные.
К ВАДРАТНЫЕ УРАВНЕНИЯ. О СНОВНЫЕ ПОНЯТИЯ. Из данных уравнений выбрать квадратные. а)х 2 -1=0; б)х 2 +2 х-1=0, в) г)3 х=0; д)2 х 2 -5 х+6=0; е) 7 х-х 2.
ОПРЕДЕЛЕНИЕ: Уравнение вида ax 2 + bx + с = 0, где х – переменная; а, b, с – некоторые числа, причём а 0, называют квадратным уравнением. а – первый коэффициент.
Квадратные уравнения. Квадратным уравнением называют уравнение вида ах 2 + вх +с = 0, где х – переменная, а, в, с – некоторые числа, причем.
п.3, стр.19 – 22 1.Приведите примеры многочлена.примеры 2.Что называется корнем многочлена?корнем 3.Что называется квадратным трёхчленом? Приведите примеры.называется.
МОУ«Средняя общеобразовательная школа 53» Выполнил: ученик 8 «б» класса Резинкин Стас Резинкин Стас.
Квадратные уравнения с параметрами.. Квадратное уравнение Дискриминант :
GE131_350A
Пункт плана КВАДРАТНЫЙ ТРЕХЧЛЕН И ЕГО КОРНИ. Повторение Среди данных функций укажите линейные убывающие функции: y = x² + 12 y = – x – 2 y = 9x + 8 h.
Квадратные уравнения.. Квадратным уравнением - называется уравнение вида ах 2 +вх+с=0,где х- переменная, а,в,с-некоторые числа, причем а=0. Квадратные.
Всё о квадратном уравнении (многосерийный фильм)
Тема урока: «Приведённое квадратное уравнение. Теорема Виета.» Учитель математики ГОУ СОШ 250: Самсонова Мария Николаевна Размещено на.
Методическая разработка по алгебре (9 класс) на тему: Повторение.Решение уравнений.
Квадратные уравнения ax2+bx+c=0. Уравнение вида ax 2 +bx+c=0 называется квадратным уравнением, где a 0. Число a – старший коэффициент уравнения Число.
Распределите данные уравнения на четыре группы и объясните, по какому признаку вы это сделали.
Квадратный трёхчлен Квадратный трёхчлен Квадратные уравнения Определение квадратного трёхчлена Корни квадратного трёхчлена.
Определение квадратного уравнения. Определение Квадратным уравнением называется уравнение вида ах 2 + bx + c=0, где х – переменная; а, b и с – некоторые.
МКОУ Наследницкая СОШ Учитель математики Коптева Т.Н. Тема урока Квадратные уравнения.
Математику нельзя изучать, наблюдая, как это делает сосед! Нивен. А.
Транксрипт:

КВАДРАТНЫЕ УРАВНЕНИЯ Основные понятия, связанные с квадратными уравнениями Лебедева Е.В., учитель математики МБОУ лицей имени В.Г. Сизова

ЦЕЛЬ: НАУЧИТЬСЯ РЕШАТЬ КВАДРАТНЫЕ УРАВНЕНИЯ РАЗНЫМИ СПОСОБАМИ ЗАДАЧИ: 1. Сформулировать определения: квадратного уравнения; приведенного и не приведенного квадратных уравнений; корня квадратного уравнения. 2. Ввести новые понятия: коэффициенты квадратного уравнения; полные и неполные квадратные уравнения. 3. Рассмотреть теорию решения неполных и полных квадратных уравнений.

Определение 1 Квадратным называют уравнение вида ах 2 + bx + c = 0, где а – старший коэффициент, b – второй коэффициент, с – свободный член. Задание. Из данных уравнений выберите квадратные: а) х 2 – 4 = 0; б) х 3 +3 х – 1 = 0; в) г) 8 х = 0; д) 2 х 2 – 5 х + 6 = 0; е) 8 х – х = 0.

Определение 2. Квадратное уравнение называют приведенным, если старший коэффициент равен 1; Квадратное уравнение называют не приведенным, если старший коэффициент отличен от 1. Определение 3. Корнем квадратного уравнения ах 2 + bx + c = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + bx + c обращается в нуль; такое значение переменной х также называют корнем квадратного трехчлена.

Задание. Распределите данные уравнения на четыре группы и объясните, по какому признаку вы это сделали. а) 9 х х + 10 = 0; б) 4 х 2 – х = 0; в) 7 х 2 = 0; г) х = 0; в) – 3 х х + 1 = 0; е) – 2 х = 0; ж) 5 х 2 – 5 = 0; з) – 8x 2 = 0; и) 8 х х = 0.

1 группа 9 х 2 – 6 х + 10 = 0; – 3 х х + 1 = 0 2 группа 4 х 2 – х = 0; 8 х х = 0. 3 группа х = 0; – 2 х = 0; 5 х 2 – 5 = 0 4 группа 7 х 2 = 0; – 8x 2 = 0 ах 2 + bx + c = 0 a 0, b 0, c 0 a 0, b =0, c = 0a 0, b = 0, c 0 a 0, b 0, c=0

Полное квадратное уравнение ах 2 + bx + c = 0 Приведенное кв. уравнение х 2 + px + q = 0 Неполное кв. уравнение a 0, b =0, c = 0 ах 2 = 0 a 0, b = 0, c 0 ах 2 + c = 0 a 0, b 0, c = 0 ах 2 + bx = 0 x (ах + b) = 0 х = 0 или ах + b = 0 ах = – b x = – два корня ах 2 = – c x 2 = – нет корней или два корня х 2 = 0 x = 0 один корень