1 Capítulo 5 Revisión de algunos conceptos de probabilidad Objetivos: Al terminar este capítulo podrá: 1.Definir lo que es probabilidad. 2.Describir los.

Презентация:



Advertisements
Похожие презентации
1 Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Objetivos: Al terminar este capítulo podrá: 1.Explicar por qué una muestra es la única.
Advertisements

1 Capítulo 7 Distribución de probabilidad normal Objetivos: Al terminar este capítulo podrá: 1.Enlistar las características de la distribución de probabilidad.
1 Capítulo 6 Distribuciones discretas de probabilidad Objetivos: Al terminar este capítulo podrá: 1.Definir los términos distribución de probabilidad y.
1 Capítulo 9 Estimación e intervalos de confianza Objetivos: Al terminar este capítulo podrá: 1.Definir una estimación puntual. 2.Interpretar el nivel.
1 Capítulo 2 Descripción de los datos, distribuciones de frecuencias y representaciones gráficas Objetivos: Al terminar este capítulo podrá: 1.Organizar.
1 Capítulo 3 Descripción de datos, medidas de tendencia central Objetivos: Al terminar este capítulo podrá: 1.Calcular la media aritmética, la media ponderada,
1 Capítulo 4 Otras medidas descriptivas Objetivos: Al terminar este capítulo podrá: 1.Calcular e interpretar la amplitud, la desviación media, la varianza.
Conversión de Binario a Decimal. Cualquier número Binario puede ser convertido en su equivalente ENTERO Decimal. La forma de hacerlo es sumar en el número.
Introducción a las Finanzas AEA 504 Unidad 4 Clase 3.
Bases de Datos en Excel Microsoft Excel aporta al usuario la posibilidad de trabajar con tablas de información: nombres, direcciones, teléfonos, zonas,
Filtro Avanzado Un Filtro avanzado permite trabajar con filtros por medio de condiciones más complejas; no muestra listas desplegables para las columnas.
1 Capítulo 1 ¿Qué es la Estadística? Objetivos: Al terminar este capítulo podrá: 1.Comprender qué es y por qué se estudia la estadística. 2.Explicar lo.
EL DEBATE El debate es una forma de dialogo organizando que tiene como finalidad analizar algún tema o asunto y llevar a determinadas conclusiones entre.
Introducción a las Finanzas AEA 504 Unidad 2 Clase 2.
Introducción a las Finanzas AEA 504 Unidad 2 Clase 3.
Referencias absolutas y relativas ¿Qué es una referencia? ¿Qué es una referencia? Cuando realizamos un cálculos como por ejemplo: =B1*B2 hacemos referencia.
Introducción a las Finanzas AEA 504 Unidad 2 Clase 1.
Java CICLOSCICLOS. Haydeé MéndezProgramación 2 2 Recordatorio Habíamos hablado que dentro de un programa nos interesa poder controlar las acciones que.
Finanzas Corporativas Principio de Separación de Fisher Manuel Carreño 2008.
PROGRAMACIÓN ESTRUCTURADA Conceptos básicos Problema Problema: Situación o circunstancia que requiere una solución Solucionar un problema: transformar.
Транксрипт:

1 Capítulo 5 Revisión de algunos conceptos de probabilidad Objetivos: Al terminar este capítulo podrá: 1.Definir lo que es probabilidad. 2.Describir los enfoques clásico, empírico y subjetivo de la probabilidad. 3.Entender los términos: experimento, evento, resultado, permutaciones y combinaciones. 4.Definir los conceptos probabilidad condicional y probabilidad conjunta.

2 Capítulo 5 (Continuación) 5.Calcular probabilidades aplicando las reglas de adición y las reglas de multiplicación. 6.Utilizar un diagrama de árbol para organizar y evaluar probabilidades. 7.Calcular una probabilidad utilizando el teorema de Bayes.

3 Definiciones La probabilidad es una medida de la posibilidad relativa de que un evento ocurra en el futuro. Puede asumir valores entre cero y uno inclusive. Un valor cercano a cero significa que es poco probable que el evento suceda. Un valor cercano a uno significa que es altamente probable que el evento suceda. Hay tres definiciones de probabilidad: clásica, empírica y subjetiva.

4 Definiciones (Continuación) La definición clásica aplica cuando hay n resultados igualmente posibles. La definición empírica aplica cuando el número de veces que ocurre un evento se divide por el número total de observaciones. La probabilidad subjetiva se basa en cualquier información disponible.

5 Definiciones (Continuación) Un experimento es un proceso que conduce a que ocurra una (y solamente una) de varias observaciones posibles. Un resultado es un suceso particular proveniente de un experimento. Un evento es un conjunto de uno o más resultados de un experimento.

6 Eventos mutuamente excluyentes Los eventos son mutuamente excluyentes si la ocurrencia de cualquiera significa que ninguno de los otros eventos puede ocurrir al mismo tiempo. Los eventos son independientes si la ocurrencia de un evento no afecta la ocurrencia de otro.

7 Eventos colectivamente exhaustivos Colectivamente exhaustivo: por lo menos uno de los eventos debe ocurrir cuando se realiza un experimento.

8 Ejemplo 1 Se lanza un dado no cargado una vez. El experimento es lanzar el dado. Los resultados posibles son los números 1, 2, 3, 4, 5 y 6. Un evento es la ocurrencia de un número par. Esto es, los números 2, 4 y 6.

9 Ejemplo 2 En el departamento académico del profesor López, se ha asignado un total de calificaciones de A de 186 entre un total de 1,200 estudiantes. ¿Cuál es la probabilidad de que un estudiante de su sección este semestre reciba una calificación de A? Este es un ejemplo de la definición empírica de probabilidad. Encuentre la probabilidad de seleccionar un estudiante con calificación A: P(A) = 186/1,200 = 0.155

10 Probabilidad subjetiva Ejemplos de probabilidad subjetiva son: Estimar la posibilidad de que el equipo de los Patriotas de Nueva Inglaterra participe en el juego del Super Tazón de futbol americano para el próximo año (en EUA). Evaluar la probabilidad de que la empresa General Motors, pierda su lugar número 1 en el total de unidades vendidas, frente a la Ford o la Chrysler, en un lapso de dos años.

11 Reglas básicas de probabilidad Si dos eventos A y B son mutuamente excluyentes, la regla especial de la adición indica que la probabilidad de que ocurra uno u otro de los eventos, es igual a la suma de sus probabilidades. P(A o B) = P(A) + P(B)

12 Ejemplo 3 La oficina de vuelos de Aeroméxico tiene registrada la siguiente información en su bitácora de vuelos entre Ciudad de México y Acapulco. LlegadasFrecuencia Temprano100 A tiempo800 Tarde75 Cancelado25 Total1000

13 Ejemplo 3 (Continuación) Si A es el evento de que el vuelo llegue temprano, entonces: P(A) = 100/1000 = 0.10 Si B es el evento de que el vuelo llegue tarde, entonces: P (B) = 75/1000 = La probabilidad de que el vuelo llegue temprano o tarde es: P(A o B) = P(A) + P(B) = = 0.175

14 La regla del complemento La regla del complemento es utilizada para determinar la probabilidad de que un evento ocurra, restando a 1 la probabilidad de que no ocurra dicho evento. Si P(A) es la probabilidad de un evento A y P(~A) es la probabilidad del complemento de A, P(A) + P(~A) = 1 o P(A) = 1 – P(~A)

15 La regla del complemento (Continuación) Un diagrama de Venn ilustrando la regla del complemento se apreciaría así: A A ~A

16 Ejemplo 4 Retomando el ejemplo 3, use la regla del complemento para encontrar la probabilidad de un evento (A) temprano o un evento (B) tarde. Si C es el evento de que el vuelo llegue a tiempo, entonces P(C) = 800/1000 = 0.8 Si D es el evento de que el vuelo se cancele, entonces P(D) = 25/1000 = 0.025

17 Ejemplo 4 (Continuación) P(A o B) = 1 - P(C o D) = 1 - [ ] =0.175 C.8 D.025 ~(C o D) = (A o B).175

18 La regla general de la adición Si A y B son dos eventos que no son mutuamente excluyentes, entonces P(A o B) es dada por la siguiente fórmula: P(A o B) = P(A) + P(B) - P(A y B)

19 La regla general de la adición (Continuación) El diagrama de Venn ilustra esta regla: A y B

20 Ejemplo 5 En una muestra de 500 estudiantes, 225 afirmaron tener un estéreo, 175 dijeron tener una TV, y 100 afirmaron tener ambos. Ambos 100 Estéreo 225 TV 175

21 Ejemplo 5 (Continuación) Si un estudiante es seleccionado al azar, ¿cuál es la probabilidad de que el estudiante tenga sólo un estéreo, sólo una TV, y ambos un estéreo y una TV? P(S) = 225/500 = 0.45 P(T) = 175/500 = 0.35 P(S y T) = 100/500 = 0.20

22 Ejemplo 5 (Continuación) Si un estudiante es seleccionado al azar, ¿cuál es la probabilidad de que tenga un estéreo o una TV en su cuarto? P(S o T) = P(S) + P(T) - P(S yT) = = 0.60

23 Probabilidad conjunta Probabilidad conjunta: mide la posibilidad de que dos o más eventos ocurran en forma simultánea. Un ejemplo podría ser el evento de que un estudiante elegido al azar tenga ambos, un estéreo y una TV en su cuarto.

24 Regla especial de la multiplicación La regla especial de la multiplicación requiere que dos eventos A y B sean independientes. Dos eventos A y B son independientes si la ocurrencia de uno no afecta la probabilidad de que ocurra el otro. Esta regla se escribe: P(A y B) = P(A)P(B)

25 Ejemplo 6 Cristina tiene dos acciones, IBM y GE. La probabilidad de que la acción de IBM aumente de valor el próximo año es 0.5, y la probabilidad de que la acción de GE aumente su valor el próximo año es 0.7. Suponga que las dos acciones son eventos independientes.¿Cuál es la probabilidad de que ambas acciones incrementen su valor el próximo año? P(IBM y GE) = (0.5)(0.7) = 0.35

26 Ejemplo 6 (Continuación) ¿Cuál es la probabilidad de que al menos una de estas acciones aumente su valor durante el próximo año? P(al menos una) = (0.5)(0.3) + (0.5)(0.7) + (0.7)(0.5) = = 0.85

27 Probabilidad condicional La probabilidad condicional es la probabilidad de que ocurra un evento determinado, dado que otro evento ya haya ocurrido. La probabilidad de que ocurra el evento A dado que el evento B ha ocurrido se escribe P(A/B).

28 Regla general de la multiplicación La regla general de la multiplicación es utilizada para encontrar la probabilidad conjunta de que dos eventos ocurran. La regla establece que dados dos eventos A y B, la probabilidad conjunta de que ambos ocurran se encuentra multiplicando la probabilidad de que suceda A, por la probabilidad condicional de que ocurra el evento B.

29 Regla general de la multiplicación La probabilidad conjunta P(A y B) está dada por la siguiente fórmula: P(A y B) = P(A)P(B/A) o P(A y B) = P(B)P(A/B)

30 Ejemplo 7 El director de la Escuela de Negocios de la Universidad Nacional, recopiló la siguiente información acerca de estudiantes no graduados en su escuela: EspecialidadHombreMujerTotal Contaduría Finanzas Mercadotecnia Administración Total

31 Ejemplo 7 (Continuación) Si un estudiante es seleccionado al azar, ¿cuál es la probabilidad de que el estudiante sea una mujer (F) pasante de contaduría (A)? P(A y F) = 110/1000 Dado que el estudiante es una mujer, ¿cuál es la probabilidad de que ella sea pasante de contaduría? P(A/F) = P(A y F)/P(F) = [110/1000]/[400/1000] = 0.275

32 Diagrama de árbol El diagrama de árbol es una representación gráfica útil para organizar cálculos que abarcan varias etapas. Cada segmento en el árbol es una etapa del problema. Las probabilidades escritas cerca de las ramas son las probabilidades condicionales del experimento. Ejemplo 8 En una bolsa que contiene 7 chips rojos y 5 chips azules, usted selecciona dos chips uno después del otro sin reemplazarlo. Elabore un diagrama de árbol mostrando esta información.

33 Ejemplo 8 (Continuación) 7/12 5/12 Rojo 1 Azul 1 6/11 5/11 7/11 4/11 Rojo 2 Azul 2 Rojo 2 Azul 2

34 Teorema de Bayes El Teorema de Bayes es un método que utiliza la probabilidad revisada con base en información adicional. Se calcula utilizando la siguiente fórmula:

35 Ejemplo 9 Una embotelladora de refresco de cola recibió varias denuncias acerca del bajo contenido de sus botellas. Una denuncia fue recibida hoy, pero el gerente de producción no puede identificar cuál de las dos plantas en Aguascalientes (A o B) llenó estas botellas.¿Cuál es la probabilidad de que las botellas defectuosas provengan de la planta A?

36 Ejemplo 9 (Continuación) La siguiente tabla resume la experiencia de producción de dicha embotelladora: % del total de producción % de botellas defectuosas A553 B454

37 Ejemplo 9 (Continuación) La probabilidad de que las botellas fueran llenadas en la planta A se redujo de 0.55 a

38 Principios de conteo Fórmula de la multiplicación: Si hay m formas de hacer una cosa, y n formas de hacer otra, existirán m x n formas de hacer ambas. Ejemplo 10 El Dr. Velasco tiene 10 camisas y 8 corbatas. ¿Cuántos juegos de camisa y corbata puede tener? (10)(8) = 80

39 Principios de conteo Permutación: Un arreglo o disposición de r objetos seleccionados de un solo grupo de n objetos posibles. Nota: El orden del arreglo es importante en las permutaciones.

40 Principios de conteo Una combinación es el número de maneras de escoger r objetos de un grupo de n objetos sin importar el orden:

41 Ejemplo 11 Hay 12 jugadores en el equipo de básquetbol de la Preparatoria Popular. El director técnico Tomás Pérez debe escoger 5 jugadores de los 12 del equipo para formar su línea de inicio. ¿De cuántas maneras diferentes puede hacerlo?

42 Ejemplo 11 (Continuación) Suponiendo que además de formar los grupos de 5 jugadores, el técnico debe respetar el orden de los mismos de acuerdo a su habilidad.