Векторная алгебра Разложение вектора по базису Системы координат Декартова прямоугольная система координат Скалярное произведение векторов Свойства скалярного.

Презентация:



Advertisements
Похожие презентации
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Advertisements

Векторная алгебра Основные понятия. Математическая величина Скалярная величина (характеризуется численным значением) Векторная величина (Характеризуется.
Элементы векторной алгебры Кафедра высшей математики ТПУ Лектор: доцент Тарбокова Татьяна В асильевна.
Глава II. Векторная алгебра. Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление.
Тема 2 «Скалярные и векторные величины» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Линейные операции.
В е к т о р ы. О с н о в н ы е п о н я т и я.. Вектором называется направленный отрезок. Обозначают векторы символами или, где А- начало, а B-конец направленного.
Векторы Линейная комбинация векторов. Пусть даны векторы: Любой вектор вида называется линейной комбинацией данных векторов. Числа -коэффициенты линейной.
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Простейшие задачи векторной алгебры. Скалярное произведение векторов.
Глава II. Векторная алгебра. Элементы теории линейных пространств и линейных операторов Раздел математики, в котором изучаются свойства операций над векторами,
Элементы векторной алгебры. Лекции 5-7. Вектором называется направленный отрезок. Обозначают векторы символами или, где А- начало, а B-конец направленного.
Векторы Величины, которые полностью определяются своим численным значением, называются скалярными: площадь, длина, объём, температура, работа, масса. Другие.
Элементы векторной алгебры. Векторы. Основные понятия. Отрезок [AB], у которого указаны его начальная точка A и конечная точка B, называется направленным.
Векторная алгебра. Основные понятия.. Декартовые прямоугольные координаты на плоскости. Координатами точки на плоскости называются числа, определяющие.
Векторы Величины, которые полностью определяются своим численным значением, называются скалярными: площадь, длина, объём, температура, работа, масса. Другие.
Элементы векторной алгебры.. Определение Совокупность всех направленных отрезков, для которых введены операции: - сравнения - сложения - умножения на.
Вектор Вектор – направленный отрезок. Другими словами, вектором называется отрезок, для которого указано, какой из его концов является началом, а какой.
1. Что такое вектор? 2. Как найти координаты вектора? 3. Что такое модуль вектора? 4. Как найти модуль вектора? 5. Какой вектор называется нулевым? 6.
ВЕКТОРНАЯ АЛГЕБРА ВЕКТОРНАЯ АЛГЕБРА Основные определения.
Тема 8. «Векторы на плоскости и в пространстве» Основные понятия: 1.Определение вектора, основные определения и линейные операции над векторами 2.Скалярное.
Презентация по геометрии на тему «Понятие векторов» Выполнила : Баймашова Маргарита Ученица 9 «А» класса ООШ 3 г. Камешково.
Транксрипт:

Векторная алгебра Разложение вектора по базису Системы координат Декартова прямоугольная система координат Скалярное произведение векторов Свойства скалярного произведения Векторное произведение Смешанное произведение Свойства смешанного произведения

Определение. Вектором или по-другому свободным вектором называется направленный отрезок (т.е. отрезок, у которого одна из ограничивающих его точек принимается за начало, а вторая – за конец). Расстояние от начала вектора до его конца называется длиной (модулем) вектора. Вектор, длина которого равна единице, называется единичным вектором или ортом. Вектор, начало и конец которого совпадают, называ- ется нулевым и обозначается. Нулевой вектор не имеет определенного направления и имеет длину, равную нулю.

Под углом между векторами и будем понимать угол, величина которого не превышает Два вектора и называются ортогональными, если угол между ними равен Два вектора и называются коллинеарными, если они лежат на одной или параллельных прямых. Три вектора, лежащие в одной или в параллельных плоскостях, называются компланарными. Два вектора называются равными, если они сона- правлены и имеют одинаковую длину. Все нулевые векторы считаются равными.

Определение. Произведением вектора на число называется вектор, длина которого, а направление совпадает с направлением вектора при и противоположно ему при. Если или, то их произведение полагают рав- ным. = противоположный вектору Лемма 2.1 (критерий коллинеарности векторов). Два ненулевых вектора и коллинеарны тогда и только тогда, когда, для некоторого числа.

Определение. Суммой векторов и называется вектор, соединяющий начало вектора с концом вектора, отложенного от конца вектора. Правило треугольникаПравило параллелограмма = разность векторов

Свойства линейных операций над векторами

Пусть – произвольный вектор. Тогда или

Свойства проекций:

Пример

– невозможно

Свойства скалярного произведения

Свойства векторного произведения

Свойства смешанного произведения