Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны 2 и наклонены к плоскости основания под.

Презентация:



Advertisements
Похожие презентации
3 х 1 0 х В ?. Объем правильной шестиугольной пирамиды 6. Сторона основания равна 1. Найдите боковое ребро. A F BC D E 1 1 ? 1 S О.
Advertisements

Объем пирамиды и усеченной пирамиды. Реши задачу Дана правильная треугольная пирамида со стороной основания 43. Боковое ребро пирамиды наклонено к плоскости.
S = a 2 sina A a D Bb C aa A BC D параллелограмм ромб S = a b sina C a A Bb 2 1.
Сторона основания правильной шестиугольной пирамиды равна 4, а угол между боковой гранью и основанием равен Найдите объем пирамиды. 3 х 1 0 х В 9.
Задачи на тему «Призма» Баженова Н. и Жеглова Е. 11 «В» класс.
Правильные многогранники А В С Д Е F О 283 Д А В С О.
ПРИЗМА Типовые задачи В-11. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота 10. a Н Используем.
А C B D В правильной 3-уг. Пирамиде сторона основания равна а, высота Н. Найдите: а) боковое ребро; б) плоский угол при вершине пирамиды; в) угол между.
Построение различных видов пирамид в зависимости от положения высоты.
Задание Чему равна площадь поверхности куба с ребром 1? Ответ: 6.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите.
По условию плоскость АВК перпендикулярна ребру РС, значит, РС будет перпендикулярно любой прямой лежащей в плоскости АВК. 8 Р A B 8 Основанием правильной.
В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный треугольник АВС с прямым углом С, катет АС в два раза больше катета ВС. Известно, что плоскость.
Устный счет А В С Дано: АВСД - ромб Найти: S = ? Дано: АВСД - ромб Найти: S = ? Д 30 0.
A С1С1С1С1 A1A1A1A1 B1B1B1B1 2 B 2 Чтобы найти высоту A 1 K, выразим два раза площадь равнобедренного треугольника BA 1 C 1. K 55С 2H В правильной треугольной.
Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды х 1 0.
Площадью полной поверхности призмы площадью боковой поверхности призмы Площадью полной поверхности призмы называется сумма площадей всех граней, а площадью.
Открытый банк заданий по математике
Сфера, вписанная в цилиндр Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При.
Сфера, вписанная в цилиндр Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При.
Транксрипт:

Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны 2 и наклонены к плоскости основания под углом х 1 0 х В Например, можно вычислить площадь правильного 6-уг., разбив его на 6 треугольников. O h ?