Грани АВС и ADC тетраэдра ABCD перпендикулярны и являются равнобедренными треугольниками с общим основанием АС. Точки E и F – середины ребер AD и CD соответственно.

Презентация:



Advertisements
Похожие презентации
По условию плоскость АВК перпендикулярна ребру РС, значит, РС будет перпендикулярно любой прямой лежащей в плоскости АВК. 8 Р A B 8 Основанием правильной.
Advertisements

Туляева А.Л.. Равнобедренный Равносторонний Разносторонний.
Подготовка к ГИА Задача 11 (площади плоских фигур) МБОУ гимназия 3 г. Мурманска Шахова Татьяна Александровна.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется Отрезок, соединяющий вершину треугольника с серединой противоположной.
D C A B 1 1 K Чтобы найти высоту AK, выразим два раза площадь треугольника ABE N 2 1 E В тетраэдре ABCD, все ребра которого равны 1,
Дан прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1, длины ребер которого АВ = 2, AD = AA 1 = 1. Найдите угол между плоскостями CD 1 B 1 и CDA 1. C B.
Точка Р – след секущей плоскости на прямой СВ. В правильной треугольной призме АВСA 1 B 1 C 1 стороны основания равны 3, а боковые ребра равны 1. Точка.
2 2 В правильной треугольной призме АВСA 1 B 1 C 1 стороны основания равны 2, а боковые ребра равны 3. Точка D – середина ребра CC 1. Найдите расстояние.
Контрольная работа по теме «Соотношение между сторонами и углами прямоугольного треугольника» 1вариант 1.На стороне ВС треугольника АВС выбрана точка D.
1 1 1 А В С 1 С 1 А 1 А 112 В 1 В 1 С В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны 1, найдите угол между плоскостями AСВ 1 и.
С А В Н Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей 8 см. Найдите боковые ребра пирамиды, если ее высота.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
ТЕСТ по теме «Векторы в пространстве». 11 класс..
П-я 4 В А С1С1 В1В1 Основанием прямой призмы ABCA 1 B 1 C 1 является равнобедренный треугольник АВС, в котором СВ=СА=5, ВА=6. Высота призмы равна 24. Точка.
Геометрия 8 класс.. Содержание Четырехугольники Многоугольники Параллелограмм Трапеция Теорема Фалеса Прямоугольник Ромб Квадрат Осевая и центральная.
Задание на дом: Повторить гл.3, определения и формулировки теорем. ЕГЭ 2009, вар.5,В10,В11.
В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный треугольник АВС с прямым углом С, катет АС в два раза больше катета ВС. Известно, что плоскость.
А C B А1А1 C1C1 B1B1 1. = 2. А C B А1А1 C1C1 = B1B1 Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники.
Теорема о трех перпендикулярах Нас мало. Нас может быть трое… Б. Пастернак. Из цикла «Я их мог позабыть»
Повторение: 1, 2 признаки равенства треугольников и равнобедренный треугольник.
Транксрипт:

Грани АВС и ADC тетраэдра ABCD перпендикулярны и являются равнобедренными треугольниками с общим основанием АС. Точки E и F – середины ребер AD и CD соответственно. Найдите угол между плоскостями АВС и FBE, если известно, что площадь треугольника АВС в 3 раза меньше площади треугольника FBE. В С А DK F E DN AC, BND – линейный угол двугранного угла BACD BN AC В равнобедренном треугольнике медиана является высотой. N EF – средняя линия треугольника ADC. Средняя линия равна половине основания, значит АС = 2EF. : 2 Из треугольника BNK найдем косинус угла В: отношение прилежащего катета к гипотенузе.