EF А 1 F, D А В С А 1 А 1 D1D1 С 1 С 1 В 1 В 1 6 4 4 1. Угол между прямой EF и плоскостью АВС равен углу между EF и плоскостью А 1 В 1 С 1, т.к. эти плоскости.

Презентация:



Advertisements
Похожие презентации
8 C D A B D1D1 C1C1 B1B1 A1A1 6 8 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. наклонная В прямоугольном.
Advertisements

8 D A B C A1A1 D1D1 C1C1 6 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. В прямоугольном параллелепипеде.
12 5 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра AB = 5, АD = 12, CC 1 = 15. Найдите угол между плоскостями ABC и A 1 DB. D AN является.
Прямая СС 1 является наклонной к плоскости ВС 1 D. Найдем проекцию СС 1 на плоскость ВС 1 D. D А В С А1А1 D1D1 С1С1 В кубе ABCDA 1 B 1 C 1 D 1 найдите.
Консультационный центр по подготовке выпускников к Государственной (итоговой) аттестации.
Задачи С 2 P CD A B a a 2 2a M a O A OP 2 a M 1. Длины всех ребер правильной четырехугольной пирамиды PABCD равны между собой. Найдите угол между прямыми.
D A B C A1A1 D1D1 C1C1 B1B N Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. проекция наклонная В прямоугольном.
Решение задачи С2 Выполнила: Ученица 11 а класса МОУ-СОШ 4 г. Маркса Гончарова Надежда Проверила: Учитель математики Александрова Т.В. ©
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания.
C D A B D1D1 C1C1 B1B1 A1A1 4 С2 С2 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 найдите угол между прямой AB 1 и плоскостью AA 1 C, если AA 1 =
Геометрия Каково может быть взаимное расположение двух прямых на плоскости? Какие прямые в планиметрии называются перпендикулярными? а.
Плоскости и пересекаются по прямой a и перпендикулярны к плоскости. Докажите, что прямая а перпендикулярна к плоскости a.
1 Подготовка к ЕГЭ Задания С 2. Углом между наклонной и плоскостью называется угол между этой наклонной и ее проекцией на данную плоскость. Прямая, перпендикулярная.
П-я 4 В А С1С1 В1В1 Основанием прямой призмы ABCA 1 B 1 C 1 является равнобедренный треугольник АВС, в котором СВ=СА=5, ВА=6. Высота призмы равна 24. Точка.
П р я м о у г о л ь н ы й п а р а л л е л е п и п е д.
Задача. Основание прямой четырехугольной призмы прямоугольник АВСD, в котором АВ=5, АD=33. Найдите тангенс угла между плоскостью грани АА 1 DD 1 призмы.
1.Ввести понятие расстояния от точки до плоскости. 2. Доказать теорему о трех перпендикулярах. 3. Научиться применять теорему о трех перпендикулярах при.
D А В С А1А1 D1D1 С1С1 В1В Угол между прямой EF и плоскостью АDD 1 равен углу между EF и плоскостью ВСС 1, т. к. эти плоскости параллельны. Подсказки.
Таблица вычисления площади боковой поверхности, площади основания и площади полной для правильных призм.
Транксрипт:

EF А 1 F, D А В С А1А1 D1D1 С1С1 В1В Угол между прямой EF и плоскостью АВС равен углу между EF и плоскостью А 1 В 1 С 1, т.к. эти плоскости параллельны. 2. Угол между прямой и плоскостью равен углу между данной прямой и её проекцией на плоскость. F E А 1 3. Искомый угол EFA 1. Е F В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1, у которого AB = 4, BC = 6, CC 1 = 4, найдите тангенс угла между плоскостью ABC и прямой EF, проходящей через середины ребер AA 1 и C 1 D 1. наклонная проекция 2 2 Находим тангенс угла EFA 1. Это отношение противолежащего катета к прилежащему катету, т.е. EA 1 к FA 1. Из FEA 1