8 C D A B D1D1 C1C1 B1B1 A1A1 6 8 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. наклонная В прямоугольном.

Презентация:



Advertisements
Похожие презентации
8 D A B C A1A1 D1D1 C1C1 6 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. В прямоугольном параллелепипеде.
Advertisements

C D A B D1D1 C1C1 B1B1 A1A1 4 С2 С2 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 найдите угол между прямой AB 1 и плоскостью AA 1 C, если AA 1 =
D A B C A1A1 D1D1 C1C1 B1B N Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. проекция наклонная В прямоугольном.
EF А 1 F, D А В С А 1 А 1 D1D1 С 1 С 1 В 1 В Угол между прямой EF и плоскостью АВС равен углу между EF и плоскостью А 1 В 1 С 1, т.к. эти плоскости.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
AB C D D1D1 A1A1 B1B1 C1C1 M N P. A B C D N Секущая плоскость проходит через точку N, параллельно плоскости DCB.
С B 1 L является наклонной к плоскости ABC. D A D1D1D1D1 C1C1C1C1 В B1B1B1B1 2 н-я п-р A1A1A1A1 3 2 NF 1) Построим линейный угол двугранного угла B 1 NAB.
D В C1C1C1C1 D1D1D1D1 А A1A1A1A1 1 н-я 2 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 АВ = 2, AD = AA 1 = 1. Найдите угол между прямой АВ 1 и плоскостью.
В правильной четырехугольной призме ABCDA 1 B 1 C 1 D 1, стороны основания которой равны 5, а боковые ребра равны 12, найдите угол между прямыми АС и ВС.
Найдем отношение объемов Объем параллелепипеда ABCDA 1 B 1 C 1 D 1 равен 12. Найдите объем треугольной пирамиды B 1 ABC. V пир. = S o H 13 A B C D B1B1.
Определение Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 0.
AB C D B 1 A 1 C 1 D 1 Дан прямоугольный параллелепипед – ABCDA 1 B 1 C 1 D 1. Назовите: а) точку пересечения прямой AD и плоскости (DD 1 C 1 ) б) линию.
Объем прямоугольного параллелепипеда.. Прямоугольный параллелепипед.
Q P M R A B C D (QPR) || (ABC) Плоскость сечения Построить сечение тетраэдра плоскостью (PQR) || (ABC)
12 5 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра AB = 5, АD = 12, CC 1 = 15. Найдите угол между плоскостями ABC и A 1 DB. D AN является.
Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки P, Q, R, принадлежащие ребрам AA 1, BB 1, CC 1 соответственно.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
BA D B1B1 C1C1 D1D1 A1A1 Если в кубе не дано ребро, то можно обозначить его буквой или взять за «1» Куб отлично вписывается в систему координат. х yz?
Угол между прямой и плоскостью Найдем угол между прямой AB, направление которой задается вектором, и плоскостью α, заданной уравнением ax + by + cz + d.
Транксрипт:

8 C D A B D1D1 C1C1 B1B1 A1A1 6 8 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. наклонная В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 найдите угол между прямой A 1 B и плоскостью AA 1 C, если AA 1 = 6, AB = 8, BC = 8. проекция O