B A D E C F А 1 А 1 А 1 А 1 B1B1B1B1 D1D1D1D1 E1E1E1E1 C1C1C1C1 F1F1F1F1 10 10 В таком ракурсе не удобно работать. 10 E1E1E1E1 F1F1F1F1 B1B1B1B1 C1C1C1C1.

Презентация:



Advertisements
Похожие презентации
B В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 4, найдите расстояние от точки A до прямой B 1 С 1. A D E C.
Advertisements

С 2 С 2. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B.
1. 1. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B C.
Повторение. ADE F B C a Все углы правильного шестиугольника равны Главная диагональ шестиугольника делит углы пополам
С D E F А В D1D1D1D1 E1E1E1E1 F1F1F1F1 A1A1A1A1 B1B1B1B C1C1C1C1 В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны.
Гранью параллелепипеда является ромб со стороной 1 и острым углом Одно из ребер параллелепипеда составляет с этой гранью угол в 60 0 и равно 2. Найдите.
Расстояние от точки до плоскости C ученица 11 «Б» Петрянкина Анастасия ГБОУ СОШ 145 г.Санкт-Петербург Учитель Эмануэль Н.Ю.
Тогда, ВАВ 1 – линейный угол двугранного угла D 1 AECA F E D C F1F1F1F1 E1E1E1E1 C1C1C1C1 1 B1B1B1B1 В правильной шестиугольной призме АВСDEFA 1 B 1 C.
Открытый банк заданий по математике. А B C D E F Найдите объем многогранника, вершинами которого являются точки A, B, C, D, E, F, A 1 правильной.
Подготовка к ЕГЭ. В единичном кубе A...D1 найдите расстояние от точки A до прямой BD1. Ответ:
В единичном кубе ABCDA 1 B 1 C 1 D 1 на диагоналях AD 1 и D 1 B 1 взяты точки E и F, так то D 1 E = AD 1, D 1 F = D 1 B 1. Найдите расстояние от точки.
В правильной четырехугольной призме АВСDA 1 B 1 C 1 D 1, стороны основания которой равны 4, а боковые ребра равны 5, найдите расстояние между прямыми АС.
Расстояние от точки до прямой С 2 (2014) Презентацию подготовил ученик 11 «Б» класса Миронович Иван Учитель Эмануэль Н. Ю.
Дан куб ABCDA 1 B 1 C 1 D 1. Через О обозначим точку пересечения диагоналей грани ВВ 1 С 1 С куба. Найдите угол между прямыми АА 1 и ОD 1. B A1A1A1A1 B1B1B1B1.
D1BD1BD1BD1B 2. Нормаль ко второй плоскости, которую я и строить не берусь… Но по условию это сечение проходит перпендикулярно прямой BD 1. Значит, ВD.
Объем параллелепипеда ABCDA 1 B 1 C 1 D 1 равен 9. Найдите объем треугольной пирамиды ABDA 1. C AB A1A1A1A1 D1D1D1D1 C1C1C1C1 B1B1B1B1 D Найдем отношение.
Упражнение 1 Найдите диагональ прямоугольного параллелепипеда, ребра которого, выходящие из одной вершины, равны 2, 3, 6. Ответ: 7.
A С1С1С1С1 A1A1A1A1 B1B1B1B1 2 B 2 Чтобы найти высоту A 1 K, выразим два раза площадь равнобедренного треугольника BA 1 C 1. K 55С 2H В правильной треугольной.
Угол между прямыми a b Пусть - тот из углов, который не превосходит любой из трех остальных углов. Тогда говорят, что угол между пересекающимися прямыми.
Опустить перпендикуляр можно из точки B 1 в верхней грани, которая перпендикулярна каждой из параллельных плоскостей. Через каждую из скрещивающихся прямых.
Транксрипт:

B A D E C F А1А1А1А1 B1B1B1B1 D1D1D1D1 E1E1E1E1 C1C1C1C1 F1F1F1F В таком ракурсе не удобно работать. 10 E1E1E1E1 F1F1F1F1 B1B1B1B1 C1C1C1C1 A1A1A1A1 D1D1D1D1 EC 1 – искомое расстояние. 20 FCB A E D R = a В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 10, найдите расстояние от точки E до прямой B 1 С