B В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 4, найдите расстояние от точки A до прямой B 1 С 1. A D E C.

Презентация:



Advertisements
Похожие презентации
B A D E C F А 1 А 1 А 1 А 1 B1B1B1B1 D1D1D1D1 E1E1E1E1 C1C1C1C1 F1F1F1F В таком ракурсе не удобно работать. 10 E1E1E1E1 F1F1F1F1 B1B1B1B1 C1C1C1C1.
Advertisements

С 2 С 2. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B.
1. 1. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B C.
С D E F А В D1D1D1D1 E1E1E1E1 F1F1F1F1 A1A1A1A1 B1B1B1B C1C1C1C1 В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны.
Повторение. ADE F B C a Все углы правильного шестиугольника равны Главная диагональ шестиугольника делит углы пополам
Расстояние от точки до плоскости C ученица 11 «Б» Петрянкина Анастасия ГБОУ СОШ 145 г.Санкт-Петербург Учитель Эмануэль Н.Ю.
В единичном кубе ABCDA 1 B 1 C 1 D 1 на диагоналях AD 1 и D 1 B 1 взяты точки E и F, так то D 1 E = AD 1, D 1 F = D 1 B 1. Найдите расстояние от точки.
Гранью параллелепипеда является ромб со стороной 1 и острым углом Одно из ребер параллелепипеда составляет с этой гранью угол в 60 0 и равно 2. Найдите.
Открытый банк заданий по математике. А B C D E F Найдите объем многогранника, вершинами которого являются точки A, B, C, D, E, F, A 1 правильной.
Тогда, ВАВ 1 – линейный угол двугранного угла D 1 AECA F E D C F1F1F1F1 E1E1E1E1 C1C1C1C1 1 B1B1B1B1 В правильной шестиугольной призме АВСDEFA 1 B 1 C.
Подготовка к ЕГЭ. В единичном кубе A...D1 найдите расстояние от точки A до прямой BD1. Ответ:
В правильной четырехугольной призме АВСDA 1 B 1 C 1 D 1, стороны основания которой равны 4, а боковые ребра равны 5, найдите расстояние между прямыми АС.
Дан куб ABCDA 1 B 1 C 1 D 1. Через О обозначим точку пересечения диагоналей грани ВВ 1 С 1 С куба. Найдите угол между прямыми АА 1 и ОD 1. B A1A1A1A1 B1B1B1B1.
В правильной шестиугольной пирамиде SАВСDEF, стороны основания которой равны 4, а боковые ребра равны 3, найдите угол между прямыми BG и AD, где G – точка.
Опустить перпендикуляр можно из точки B 1 в верхней грани, которая перпендикулярна каждой из параллельных плоскостей. Через каждую из скрещивающихся прямых.
Расстояние от точки до прямой С 2 (2014) Презентацию подготовил ученик 11 «Б» класса Миронович Иван Учитель Эмануэль Н. Ю.
Решение стереометрических задач методом координат.
B В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от середины ребра AA 1 до прямой BD 1.
B A D C C1C1C1C1 A1A1A1A1 D1D1D1D1 F 1). Построим сечение призмы плоскостью D 1 MK M B1B1B1B1 K8 2). MK, т.к. точки M и K лежат в одной плоскости.
D1BD1BD1BD1B 2. Нормаль ко второй плоскости, которую я и строить не берусь… Но по условию это сечение проходит перпендикулярно прямой BD 1. Значит, ВD.
Транксрипт:

B В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 4, найдите расстояние от точки A до прямой B 1 С 1. A D E C F А1А1А1А1 B1B1B1B1 D1D1D1D1 E1E1E1E1 C1C1C1C1 F1F1F1F1 4 4 В таком ракурсе не удобно работать. 4 E1E1E1E1 F1F1F1F1 B1B1B1B1 C1C1C1C1 A1A1A1A1 D1D1D1D1 L AL – искомое расстояние. Заменим этот отрезок равным, который более удобен для вычисления. AD II B 1 C 1. AL – расстояние между параллельными прямыми. Получили трапецию. Построим высоту трапеции. KC 1 = AL. 8 FCB A E D R = a K 4