D C A B N 60 0 O Дан правильный тетраэдр ABCD с ребром. Найдите расстояние от вершины А до плоскости BDC.6 6 6 6 232 О – точка пересечения медиан. Применим.

Презентация:



Advertisements
Похожие презентации
В пирамиде DABC все ребра равны. Через О обозначим центр основания АВС, а через К – середину высоты DO пирамиды. Найдите расстояние от точки К до грани.
Advertisements

Дан правильный тетраэдр MABC с ребром 1. Найдите расстояние между прямыми ВL и MO и, где L середина ребра MC, O центр грани ABC. М C В А E N L.
A a II На рисунке две скрещивающиеся прямые a и b. Через каждую из них проведена плоскость, параллельная другой прямой. Отрезки параллельных прямых, заключенные.
В правильном тетраэдре ABCD найдите угол между высотой тетраэдра DH и медианой BM боковой грани BDC. H D C A B 1 1 M E Заменим DH на параллельную.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде боковое.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
В правильном тетраэдре AВСD найдите угол между медианой ВМ грани АВD и плоскостью BCD. D A C B E N M 2 1 Если не дано ребро, то можно обозначить.
2 1 В правильном тетраэдре АВСD точка М середина ребра DC. Найдите угол между прямой ВМ и плоскостью АВС. наклонная O D A C B E N проекция Если не дано.
3 20 AC ВN, AC SN АBC ВNS, NM NKнаклонная O S B A C K проекция 10 Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. N M ? В.
D C A B 1 1 K Чтобы найти высоту AK, выразим два раза площадь треугольника ABE N 2 1 E В тетраэдре ABCD, все ребра которого равны 1,
ТЕСТ по теме «Векторы в пространстве». 11 класс..
Пирамида Волкова О.И. Учитель первой категории МОУ «Васильевская средняя общеобразовательная школа 1» Волкова О.И. Учитель первой категории МОУ «Васильевская.
ТЕТРАЭДР Тетраэдр – представитель правильных выпуклых многогранников. Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся.
Наклонная проекция O Дана правильная треугольная пирамида DABC с вершиной D. Ребро основания пирамиды равно, высота –. Найдите расстояние от середины ребра.
ПОСТРОЕНИЕ СЕЧЕНИЙ В ТЕТРАЭДРЕ И ПАРАЛЛЕЛЕПИПЕДЕ.
Медианы треугольника А В С К О Р М М ВМ – медиана, АМ=МС; КМ – медиана, ОМ=МР Отрезок, соединяющий вершину треугольника с
Старт Свойство медиан треугольника. Вопрос 1 Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется высотамедиана биссектриса.
Построение сечений многогранниковмногогранников. Практикум Геометрические понятия ПлоскостьПлоскость – грань ПрямаяПрямая – ребро ТочкаТочка – вершина.
Rra Если вы забыли формулы взаимосвязи между R, r и a для правильного треугольника, всегда легко их вывести. Например, можно получить эти формулы так:
Транксрипт:

D C A B N 60 0 O Дан правильный тетраэдр ABCD с ребром. Найдите расстояние от вершины А до плоскости BDC О – точка пересечения медиан. Применим свойство медиан: медианы треугольника пересекаются в отношении 2 к 1, считая от вершины СO : ON = 2 : 1. Вся медиана CN– это 3 части. NО = : 3 = (это 1 часть) CО = : 3 * 2 = (это 2 части)