Дан куб ABCDA 1 B 1 C 1 D 1. Через О обозначим точку пересечения диагоналей грани ВВ 1 С 1 С куба. Найдите угол между прямыми АА 1 и ОD 1. B A1A1A1A1 B1B1B1B1.

Презентация:



Advertisements
Похожие презентации
Две пересекающиеся плоскости образуют две пары равных между собой двугранных углов. Величиной угла между плоскостями называется величина меньшего двугранного.
Advertisements

В единичном кубе ABCDA 1 B 1 C 1 D 1 на диагоналях AD 1 и D 1 B 1 взяты точки E и F, так то D 1 E = AD 1, D 1 F = D 1 B 1. Найдите расстояние от точки.
Пусть вектор нормали n {x;y;z}. Вектор, перпендикулярный плоскости, будет перпендикулярен любой прямой, лежащей в этой плоскости. Тогда, В правильной четырехугольной.
Гранью параллелепипеда является ромб со стороной 1 и острым углом Одно из ребер параллелепипеда составляет с этой гранью угол в 60 0 и равно 2. Найдите.
Прямая СС 1 является наклонной к плоскости ВС 1 D. Найдем проекцию СС 1 на плоскость ВС 1 D. D А В С А1А1 D1D1 С1С1 В кубе ABCDA 1 B 1 C 1 D 1 найдите.
D1BD1BD1BD1B 2. Нормаль ко второй плоскости, которую я и строить не берусь… Но по условию это сечение проходит перпендикулярно прямой BD 1. Значит, ВD.
B A D C C1C1C1C1 A1A1A1A1 D1D1D1D1 F 1). Построим сечение призмы плоскостью D 1 MK M B1B1B1B1 K8 2). MK, т.к. точки M и K лежат в одной плоскости.
С 2 С 2. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B.
Ребро куба ABCDA 1 B 1 C 1 D 1 равно 6. Найдите расстояние от ребра DC до диагонали D 1 B куба. D С 1 С 1 С 1 С 1 D1D1D1D1 А А 1 А 1 А 1 А В В 1.
D1BD1BD1BD1B 2. Нормаль ко второй плоскости, которую я и строить не берусь… Но по условию это сечение проходит перпендикулярно прямой BD 1. Значит, ВD.
D В C1C1C1C1 D1D1D1D1 А A1A1A1A1 1 н-я 2 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 АВ = 2, AD = AA 1 = 1. Найдите угол между прямой АВ 1 и плоскостью.
Плоскости и пересекаются по прямой a и перпендикулярны к плоскости. Докажите, что прямая а перпендикулярна к плоскости a.
Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания.
Угол между скрещивающимися прямыми Геометрия 10 класс.
А А 1 А 1 В В 1 В 1 С С 1 С 1 D D1D1 1) несколько точек, которые лежат в плоскости α. α Найдите:
Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D АВ С А 1 А 1 D1D1 С 1 С 1 В 1 В 1 Если в кубе не дано.
Плоскости и пересекаются по прямой а. Из точки М проведены перпендикуляры МА и МВ соответственно к плоскостям и. Прямая а пересекает плоскость АМВ в точке.
С D E F А В D1D1D1D1 E1E1E1E1 F1F1F1F1 A1A1A1A1 B1B1B1B C1C1C1C1 В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны.
Взаимное расположение прямых в пространстве. Угол между прямыми.
Определение Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 0.
Транксрипт:

Дан куб ABCDA 1 B 1 C 1 D 1. Через О обозначим точку пересечения диагоналей грани ВВ 1 С 1 С куба. Найдите угол между прямыми АА 1 и ОD 1. B A1A1A1A1 B1B1B1B1 C C1C1C1C1 A D D1D1D1D1 1. Заменим прямую АА 1 на параллельную DD 1, ОD 1 на параллельную KL. O 2. LD перпендикулярно к плоскости АВС, тогда LD перпендикулярно любой прямой, лежащей в плоскости. LD DK.L K Пусть ребро куба равно 1. 52