Тогда, ВАВ 1 – линейный угол двугранного угла D 1 AECA F E D C F1F1F1F1 E1E1E1E1 C1C1C1C1 1 B1B1B1B1 В правильной шестиугольной призме АВСDEFA 1 B 1 C.

Презентация:



Advertisements
Похожие презентации
С 2 С 2. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B.
Advertisements

Повторение. ADE F B C a Все углы правильного шестиугольника равны Главная диагональ шестиугольника делит углы пополам
1. 1. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B C.
B A D E C F А 1 А 1 А 1 А 1 B1B1B1B1 D1D1D1D1 E1E1E1E1 C1C1C1C1 F1F1F1F В таком ракурсе не удобно работать. 10 E1E1E1E1 F1F1F1F1 B1B1B1B1 C1C1C1C1.
Гранью параллелепипеда является ромб со стороной 1 и острым углом Одно из ребер параллелепипеда составляет с этой гранью угол в 60 0 и равно 2. Найдите.
Пусть вектор нормали n {x;y;z}. Вектор, перпендикулярный плоскости, будет перпендикулярен любой прямой, лежащей в этой плоскости. Тогда, В правильной четырехугольной.
B A D C C1C1C1C1 A1A1A1A1 D1D1D1D1 F 1). Построим сечение призмы плоскостью D 1 MK M B1B1B1B1 K8 2). MK, т.к. точки M и K лежат в одной плоскости.
С B 1 L является наклонной к плоскости ABC. D A D1D1D1D1 C1C1C1C1 В B1B1B1B1 2 н-я п-р A1A1A1A1 3 2 NF 1) Построим линейный угол двугранного угла B 1 NAB.
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
С D E F А В D1D1D1D1 E1E1E1E1 F1F1F1F1 A1A1A1A1 B1B1B1B C1C1C1C1 В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны.
В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 точка M – середина ребра B 1 C 1, AB = 3, BC = 4, BB 1 = 2. Найдите угол между плоскостями BMD и ABC.
D В C1C1C1C1 D1D1D1D1 А A1A1A1A1 1 н-я 2 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 АВ = 2, AD = AA 1 = 1. Найдите угол между прямой АВ 1 и плоскостью.
B В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 4, найдите расстояние от точки A до прямой B 1 С 1. A D E C.
В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный треугольник АВС с прямым углом С, катет АС в два раза больше катета ВС. Известно, что плоскость.
В ромбе угол В тупой. Высота, опущенная из С, пройдет во внешней области фигуры В A D C D А В С А 1 А 1 D1D1 С 1 С 1 Основанием прямой призмы ABCDA.
Расстояние от точки до плоскости C ученица 11 «Б» Петрянкина Анастасия ГБОУ СОШ 145 г.Санкт-Петербург Учитель Эмануэль Н.Ю.
Упражнение 1 Найдите диагональ прямоугольного параллелепипеда, ребра которого, выходящие из одной вершины, равны 2, 3, 6. Ответ: 7.
В прямоугольном параллелепипеде АВСDА 1 В 1 С 1 D 1 диагональ B 1 D составляет с плоскостью основания угол в 45 0, а двугранный угол А 1 В 1 ВD равен 60.
Гороховой Юлии 11 « А » школа 531. Призма - это многогранник, в основаниях которого лежат равные многоугольники, а боковые грани - параллелограмы.
П р я м о у г о л ь н ы й п а р а л л е л е п и п е д.
Транксрипт:

Тогда, ВАВ 1 – линейный угол двугранного угла D 1 AECA F E D C F1F1F1F1 E1E1E1E1 C1C1C1C1 1 B1B1B1B1 В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, через вершины A, E и D 1 проведена плоскость. Найдите двугранный угол (в градусах) между этой плоскостью и плоскостью основания призмы. 1 A1A1A1A1 ADE F B C Применим теорему о трех перпендикулярах. ВА АЕ п-я В 1 А АЕ н-я п-р н-я D1D1D1D1 B п-я Боковая грань призмы – квадрат. Диагональ квадрата делит его углы пополам. Ответ: 45 0.