Найдем отношение объемов Объем параллелепипеда ABCDA 1 B 1 C 1 D 1 равен 12. Найдите объем треугольной пирамиды B 1 ABC. V пир. = S o H 13 A B C D B1B1.

Презентация:



Advertisements
Похожие презентации
Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной центр куба. Найдем отношение объемов V.
Advertisements

Пирамида AD 1 CB 1 получается, если мы отрежем от параллелепипеда четыре пирамиды по углам ABCB 1, D 1 B 1 CC 1, AA 1 D 1 B 1 и ADCD 1. А объем каждой.
8 D A B C A1A1 D1D1 C1C1 6 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. В прямоугольном параллелепипеде.
Объем параллелепипеда ABCDA 1 B 1 C 1 D 1 равен 9. Найдите объем треугольной пирамиды ABDA 1. C AB A1A1A1A1 D1D1D1D1 C1C1C1C1 B1B1B1B1 D Найдем отношение.
8 C D A B D1D1 C1C1 B1B1 A1A1 6 8 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. наклонная В прямоугольном.
Q P M R A B C D (QPR) || (ABC) Плоскость сечения Построить сечение тетраэдра плоскостью (PQR) || (ABC)
Объем прямоугольного параллелепипеда.. Прямоугольный параллелепипед.
В правильной четырехугольной призме ABCDA 1 B 1 C 1 D 1, стороны основания которой равны 5, а боковые ребра равны 12, найдите угол между прямыми АС и ВС.
AB C D B 1 A 1 C 1 D 1 Дан прямоугольный параллелепипед – ABCDA 1 B 1 C 1 D 1. Назовите: а) точку пересечения прямой AD и плоскости (DD 1 C 1 ) б) линию.
Сеть творческих учителей. Сообщество учителей математики. Творческая группа Мастерская. Мультимедийные презентации для уроков математики.
AB C D D1D1 A1A1 B1B1 C1C1 M N P. A B C D N Секущая плоскость проходит через точку N, параллельно плоскости DCB.
Устная работа Из приведенных формул, выберите формулу для нахождения пути:
Задача 1 ( 375): Дан тетраэдр ABCD. Точки K и M – середины AB и CD. Докажите, что середины отрезков KC, KD, MA и MB являются вершинами некоторого параллелограмма.
Взаимное расположение двух прямых в пространстве.
Объем правильной четырехугольной пирамиды SABCD равен 12. Точка E середина ребра SB. Найдите объем треугольной пирамиды EABC. S B D A C O h 21 Точка E.
Определение Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 0.
BA D B1B1 C1C1 D1D1 A1A1 Если в кубе не дано ребро, то можно обозначить его буквой или взять за «1» Куб отлично вписывается в систему координат. х yz?
EF А 1 F, D А В С А 1 А 1 D1D1 С 1 С 1 В 1 В Угол между прямой EF и плоскостью АВС равен углу между EF и плоскостью А 1 В 1 С 1, т.к. эти плоскости.
Объёмы многогранников Цель урока: повторить формулы объемов наклонной призмы и пирамиды, рассмотренные на уроках алгебры; применение полученных знаний.
Урок по геометрии в 11 классе разработан по учебник Л.С.Атанасяна. Учитель Отдельнова Л.В.
Транксрипт:

Найдем отношение объемов Объем параллелепипеда ABCDA 1 B 1 C 1 D 1 равен 12. Найдите объем треугольной пирамиды B 1 ABC. V пир. = S o H 13 A B C D B1B1 C1C1 D1D1 A1A1 V приз. = S o H h h х 1 0 х В 9 2 2S ABC =