В прямоугольном параллелепипеде АВСDА 1 В 1 С 1 D 1 диагональ B 1 D составляет с плоскостью основания угол в 45 0, а двугранный угол А 1 В 1 ВD равен 60.

Презентация:



Advertisements
Похожие презентации
Плоскости и пересекаются по прямой a и перпендикулярны к плоскости. Докажите, что прямая а перпендикулярна к плоскости a.
Advertisements

П р я м о у г о л ь н ы й п а р а л л е л е п и п е д.
Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются.
Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я TTП АС ВМ H-я H-я АС NМ П-я П-я Угол ВMN.
В ромбе угол В тупой. Высота, опущенная из С, пройдет во внешней области фигуры В A D C D А В С А 1 А 1 D1D1 С 1 С 1 Основанием прямой призмы ABCDA.
A a II расстоянием между скрещивающимися прямыми. Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно.
Плоскости и пересекаются по прямой а. Из точки М проведены перпендикуляры МА и МВ соответственно к плоскостям и. Прямая а пересекает плоскость АМВ в точке.
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
Площадью полной поверхности призмы площадью боковой поверхности призмы Площадью полной поверхности призмы называется сумма площадей всех граней, а площадью.
В прямоугольном параллелепипеде АВСDА 1 В 1 С 1 D 1 диагональ B 1 D составляет с плоскостью основания угол в 45 0, а двугранный угол А 1 В 1 ВD равен 60.
2003 г вар.2 Вокруг прямой четырехугольной призмы АВСDА 1 В 1 С 1 D 1 описан цилиндр. Основание призмы- прямоугольник АВСD, диагонали которого образуют.
«Перпендикулярные прямые в пространстве» «Перпендикулярность прямой и плоскости» Математика, 10 класс.
С D А 6 B 8 D 6 А В D1D1 С 1 С 1 В 1 В 1 А 1 А 1 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра АВ=8, АD=6, СС 1 =5. Найдите угол между.
8 D A B C A1A1 D1D1 C1C1 6 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. В прямоугольном параллелепипеде.
В С А В 1 В 1 А 1 А 1 С 1 С 1 Основанием прямой призмы ABCA 1 B 1 C 1 является прямоугольный треугольник АВС с прямым углом С. ВС = 3. Высота призмы равна.
Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания.
Угол между прямой и плоскостью. Что называется углом между пересекающимися прямыми? a b ) a b = (0 ;90 Угол между прямыми - это величина, а не фигура.
Теорема прямоугольного параллелепипеда. Параллелепипед называется прямоугольным, если его боковые рёбра перпендикулярны к основанию, а основания представляют.
Таблица вычисления площади боковой поверхности, площади основания и площади полной для правильных призм.
Диагональ прямоугольного параллелепипеда равна и образует углы 30 0, 30 0 и 45 0 с плоскостями граней параллелепипеда. Найдите объем параллелепипеда. Найдем.
Транксрипт:

В прямоугольном параллелепипеде АВСDА 1 В 1 С 1 D 1 диагональ B 1 D составляет с плоскостью основания угол в 45 0, а двугранный угол А 1 В 1 ВD равен Найдите объем параллелепипеда, если диагональ основания равна 12 см D А B С А1А1 D1D1 С1С1 В1В1 Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость. Н-я А П-я М П-Р Н Угол D 1 B 1 A 1 – линейный угол двугранного угла А 1 В 1 ВD. DBA 12