1 Подготовка к ЕГЭ Задания С 2. Углом между наклонной и плоскостью называется угол между этой наклонной и ее проекцией на данную плоскость. Прямая, перпендикулярная.

Презентация:



Advertisements
Похожие презентации
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Advertisements

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ В ПРОСТРАНСТВЕ Расстоянием между точкой и плоскостью в пространстве называется длина перпендикуляра, опущенного из.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
1. В кубе A…D 1 найдите угол между прямыми AB 1 и BC 1. Ответ: 60 o.
Решение задания С2 «Расстояние между прямыми» Вариант 9(2014) Работу выполнил ученик 11 «Б» Позняк Владислав ГБОУ СОШ 145 г.Санкт-Петербург Учитель Эмануэль.
Р ЕШЕНИЕ ЗАДАНИЙ С 2. В ЕДИНИЧНОМ КУБЕ АВСDА 1 В 1 С 1 D 1 НАЙДИТЕ УГОЛ МЕЖДУ ПРЯМЫМИ АВ 1 И ВС 1. Решение: Введем систему координат, считая началом координат.
Решение заданий С2 по материалам ЕГЭ 2012 года (Часть 4 ) МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Учитель математики Е.Ю. Семёнова.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
Шабанов Никита. -направляющие вектора прямых а b.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
П-я 4 В А С1С1 В1В1 Основанием прямой призмы ABCA 1 B 1 C 1 является равнобедренный треугольник АВС, в котором СВ=СА=5, ВА=6. Высота призмы равна 24. Точка.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Транксрипт:

1 Подготовка к ЕГЭ Задания С2

Углом между наклонной и плоскостью называется угол между этой наклонной и ее проекцией на данную плоскость. Прямая, перпендикулярная плоскости, образует с этой плоскостью прямой угол.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между прямой AB и плоскостью BB 1 C 1. Ответ: 60 o. 1 1 Н подсказка Ответ

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите тангенс угла между прямой AA 1 и плоскостью AB 1 C 1. Ответ: Ответ: 2 2 Н Ответ

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите тангенс угла между прямой AA 1 и плоскостью ABC 1. Ответ: Ответ: 3 3 подсказка АА 1 || СС 1 Далее решаем аналогично задаче 2 Ответ

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите синус угла между прямой AB и плоскостью A 1 BC подсказка АВ || B 1 A 1 ; B 1 A 1 –наклонная, O – основание перпендикуляра, опущенного из точки B 1 на плоскость A 1 BC 1, A 1 О - проекция. Искомый угол равен углу B 1 A 1 O. Из прямоугольного треугольника BB 1 D находим B 1 O. О D Ответ:

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите синус угла между прямой AB 1 и плоскостью BB 1 C 1. А B 1 – наклонная к плоскости BB 1 C 1, AD -перпендикуляр, В D – проекция наклонной. подсказка 5 5 Ответ: D

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите угол между прямой и плоскостью: AB 1 и ABC 1. Решение: Достроим треугольную призму до четырехугольной. BEE 1 B 1 – сечение, перпендикулярное CD. B 1 O перпендикулярен BE 1. Искомый угол равен углу B 1 AO. Из прямоугольного треугольника BB 1 E 1 находим: Следовательно, 6 6 Ответ: arcsin 42 / 14