Определение.a a S A F N D H Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. Повторение
q p a a p, p, a q, q, Признак перпендикулярности прямой и плоскости. a Повторение Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.
Планиметрия Стереометрия Отрезок АН – перпендикуляр Точка Н – основание перпендикуляра Отрезок АМ – наклонная Точка М – основание наклонной Н А а А Н М М Отрезок МН – проекция наклонной на прямую а Отрезок МН – проекция наклонной на плоскость
Планиметрия Стереометрия Расстояние от точки до прямой – длина перпендикуляра Н А а А Н М М Расстояние от точки до плоскости – длина перпендикуляра Из всех расстояний от точки А до различных точек прямой а наименьшим является длина перпендикуляра. плоскости
Расстояние от лампочки до земли измеряется по перпендикуляру, проведенному от лампочки к плоскости земли Н а к л о н н а я ПЕРПЕНДИКУЛЯРПЕРПЕНДИКУЛЯР Проекция
Если две плоскости параллельны, то все точки одной плоскости равноудалены от другой плоскости. Расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости называется расстоянием между параллельными плоскостями. II
Если прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости. a a IIa расстоянием между прямой и параллельной ей плоскостью. Расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.
a a II Если две прямые скрещиваются, то через каждую из них проходит плоскость, параллельная другой прямой, и притом только одна. a расстоянием между скрещивающимися прямыми. Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. b a b
расстоянием между скрещивающимися прямыми. Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. Отрезок, имеющий концы на двух скрещивающихся прямых и перпендикулярный к этим прямым, называется их общим перпендикуляром. общий перпендикуляр На рисунке АВ – общий перпендикуляр. АВ
В С П-Р M П-Я Н-Я А Н-Я П-Я
A К Из точки А к плоскости проведены две наклонные, которые образуют со своими проекциями на плоскость углы в Угол между наклонными Найдите расстояние между основаниями наклонных, если расстояние от точки А до плоскости равно см С В
А Н П-Р М Теорема о трех перпендикулярах. Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной. Н-я П-я a
А Н П-Р М Обратная теорема. Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции. Н-я П-я a
П-я 1 А В Из точки М проведен перпендикуляр МВ к плоскости прямоугольника АВСD. Докажите, что треугольники АМD и МСD прямоугольные. D С М П-Р Н-я 1 Н-я 2 П-я TTП AD AB П-я 1 AD AM Н-я 1 TTП DC BC П-я 2 DC CM Н-я 2
Прямая АК перпендикулярна к плоскости правильного треугольника АВС, а точка М – середина стороны ВС. Докажите, что МК ВС. В С АМ 148. К П-я П-Р Н-я TTП BC AМ П-я BC MК Н-я
Отрезок АD перпендикулярен к плоскости равнобедренного треугольника АВС. Известно, что АВ = АС = 5 см, ВС = 6 см, АD = 12 см. Найдите расстояния от концов отрезка АD до прямой ВС. В С АN 149D П-я П-Р Н-я TTП BC AN П-я BC DN Н-я АN и DN – искомые расстояния
П-Р Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость. Н-я П-я Н А М