Решение кубических уравнений с параметром МОУ «Кисловская СОШ» Томского района Томской области Кисловка – 2009 г. Презентацию подготовил: учитель математики Баранникова Е. А. ЭЛЕКТИВНЫЙ КУРС 9 КЛАСС
При каких значениях т уравнение имеет 2 различных корня? Задание 1
Решение Представим уравнение в виде Отсюда или. Таким образом, при любом значении m данное уравнение имеет корень, равный 0. Рассмотрим второе уравнение. Возможны 2 случая:и
Ответ: При получаем полное квадратное уравнение. Если его дискриминант равен 0, то оно имеет единственный корень, а уравнение два корня. Имеем: При данном m исходное уравнение имеет 2 различных корня. При получаем неполное квадратное уравнение, корни которого 0 и 4. Таким образом, при исходное уравнение также имеет 2 различных корня. при
При каких значениях k уравнение имеет 2 различных корня? Задание 2
Решение Представим уравнение в виде Отсюда или. Таким образом, при любом значении k данное уравнение имеет корень, равный 0. Рассмотрим второе уравнение. Возможны 2 случая:и
Ответ: При получаем полное квадратное уравнение. Если его дискриминант равен 0, то оно имеет единственный корень, а уравнение два корня. Имеем: При данном k исходное уравнение имеет 2 различных корня. При получаем неполное квадратное уравнение, корни которого 0 и 6. Таким образом, при исходное уравнение также имеет 2 различных корня. при
При каких значениях k уравнение имеет 2 различных корня? Задание 3
Решение Представим уравнение в виде Отсюда или. Таким образом, при любом значении k данное уравнение имеет корень, равный 0. Рассмотрим второе уравнение. Возможны 2 случая:и
Ответ: При получаем полное квадратное уравнение. Если его дискриминант равен 0, то оно имеет единственный корень, а уравнение два корня. Имеем: При данном k исходное уравнение имеет 2 различных корня. При получаем неполное квадратное уравнение, корни которого 0 и. Таким образом, при исходное уравнение также имеет 2 различных корня. при
Решите самостоятельно: При каких значениях т уравнение имеет 2 различных корня?