РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.

Презентация:



Advertisements
Похожие презентации
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
Advertisements

РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Уравнение плоскости. Расстояние от точки до плоскости.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ В ПРОСТРАНСТВЕ Расстоянием между точкой и плоскостью в пространстве называется длина перпендикуляра, опущенного из.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ И ПЛОСКОСТИ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на.
1 Задачи раздела С 2 Расстояния и углы в пространстве А А1А1 B B1B1 C C1C1 D D1D1 1 1 Елескина Н.Н. МОУ «Лицей 1» Киселёвск, январь, 2011.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
Основные понятия Скрещивающиеся прямые Расстояние между скрещивающимися прямыми Угол между скрещивающимися прямыми.
ХОД УРОКА 1.Проверка домашней работы 2. «Мой маленький проект» 3.Самостоятельная работа 4.Задача из ЕГЭ, уровня «С».
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
Транксрипт:

РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного к этим прямым. Если одна из двух данных прямых лежит в плоскости, а другая – параллельна этой плоскости, то расстояние между данными прямыми равно расстоянию между прямой и плоскостью. Если ортогональная проекция на плоскость переводит прямую a в точку A, а прямую b в прямую b, то расстояние AB между прямыми a и b равно расстоянию AB от точки A до прямой B.

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BB 1. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CC 1. Ответ:

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BC. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CD. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BC 1. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CD 1. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BD. Ответ: Решение. Пусть O – середина BD. Искомым расстоянием является длина отрезка AO. Она равна

В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BD 1. Ответ: Решение. Пусть P, Q – середины AA 1, BD 1. Искомым расстоянием является длина отрезка PQ. Она равна

В единичном кубе A…D 1 найдите расстояние прямыми AB 1 и CD 1. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние между прямыми AB 1 и BC 1. Ответ: Решение. Искомое расстояние равно расстоянию между параллельными плоскостями AB 1 D 1 и BDC 1. Диагональ A 1 C перпендикулярна этим плоскостям и делится в точках пересечения на три равные части. Следовательно, искомое расстояние равно длине отрезка EF и равно

В единичном кубе A…D 1 найдите расстояние между прямыми AB 1 и A 1 C 1. Ответ: Решение аналогично предыдущему.

В единичном кубе A…D 1 найдите расстояние прямыми AB 1 и BD 1. Ответ: Решение. Диагональ BD 1 перпендикулярна плоскости равностороннего треугольника ACB 1 и пересекает его в центре P вписанной в него окружности. Искомое расстояние равно радиусу OP этой окружности. OP =