РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ В ПРОСТРАНСТВЕ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной.

Презентация:



Advertisements
Похожие презентации
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
Advertisements

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием между точкой и прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
Уравнение плоскости. Расстояние от точки до плоскости.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ В ПРОСТРАНСТВЕ Расстоянием между точкой и плоскостью в пространстве называется длина перпендикуляра, опущенного из.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованная двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Транксрипт:

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ В ПРОСТРАНСТВЕ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную плоскость.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости A 1 B 1 C 1. Ответ: 1.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости DEE 1. Решение: Искомым расстоянием является длина отрезка AE. Она равна. Ответ:.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости CDD 1. Решение: Искомым расстоянием является длина отрезка AC. Она равна. Ответ:.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости BCC 1. Ответ: Решение: Продолжим отрезки CB и FA до пересечения в точке G. Треугольник ABG равносторонний. Искомым расстоянием является длина высоты AH треугольника ABG. Она равна

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости BDD 1. Ответ: 1. Решение: Искомым расстоянием является длина отрезка AB. Она равна 1.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости BEE 1. Ответ: Решение: Пусть O – центр нижнего основания. Треугольник ABO – равносторонний. Искомое расстояние равно высоте AH этого треугольника. Она равна

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости BFF 1. Ответ: Решение: Пусть O – центр нижнего основания, H – точка пересечения AO и BF. Тогда AH – искомое расстояние. Оно равно

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости CEE 1. Ответ: Решение: Проведем диагональ AD. Обозначим H – ее точку пересечения с CE. AH – искомое расстояние. Оно равно

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости CFF 1. Ответ: Решение: Проведем отрезок AE. Обозначим H – его точку пересечения с CА. AH – искомое расстояние. Оно равно

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости BA 1 E 1. Ответ: Решение: Искомым расстоянием является длина перпендикуляра AH, опущенного из точки A на прямую A 1 B. Оно равно

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости A 1 B 1 D. Ответ:. Решение: Искомым расстоянием является длина перпендикуляра AH, опущенного из точки A на прямую A 1 E. Для его нахождения рассмотрим прямоугольный треугольник AEA 1. Имеем AA 1 = 1, AE =, A 1 E = 2. Следовательно, угол AEA 1 равен 30 о и высота AH равна.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости A 1 B 1 C. Решение: Искомое расстояние равно высоте AH прямоугольного треугольника AGA 1, в котором AA 1 = 1, AG =, GA 1 = Ответ: Из подобия треугольников AA 1 G и HAG находим AH =

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние от точки A до плоскости F 1 C 1 D. Решение: Заметим, что данная плоскость параллельна плоскости A 1 B 1 C из предыдущей задачи, причем AE = 2AG. Следовательно, искомое расстояние AH от точки A до плоскости F 1 C 1 D в два раза больше расстояния от точки A до плоскости A 1 B 1 C, т.е. равно Ответ: