РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.

Презентация:



Advertisements
Похожие презентации
Уравнение плоскости. Расстояние от точки до плоскости.
Advertisements

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ В ПРОСТРАНСТВЕ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ В ПРОСТРАНСТВЕ Расстоянием между точкой и плоскостью в пространстве называется длина перпендикуляра, опущенного из.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
Многогранники: типы задач и методы их решения. Домашняя задача В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный равнобедренный треугольник.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ И ПЛОСКОСТИ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием между точкой и прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованная двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
Транксрипт:

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную плоскость.

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости BCC 1. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости CDD 1. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости A 1 B 1 C 1. Ответ: 1.

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости BB 1 D 1. Ответ:

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости BCD 1. Ответ:

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости CDA 1. Ответ:

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости BDA 1. Ответ: Решение: Диагональ AC 1 куба перпендикулярна плоскости BDA 1. Обозначим O - центр грани ABCD, E - точка пересечения AC 1 и плоскости BDA 1. Длина отрезка AE будет искомым расстоянием. В прямоугольном треугольнике AOA 1 имеем AA 1 = 1; AO = ; OA 1 =. Следовательно, AE =

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости CB 1 D 1. Ответ: Решение: Плоскость CB 1 D 1 параллельна плоскости BDA 1, и отстоит от вершины C 1 на расстояние (см. предыдущую задачу). Учитывая, что длина диагонали куба равна, получим, что искомое расстояние AF равно.

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости BC 1 D. Ответ: Решение: Обозначим O и O 1 – центры граней куба. Прямая AO 1 параллельна плоскости BC 1 D и, следовательно, расстояние от точки A до плоскости BC 1 D равно расстоянию от точки O 1 до этой плоскости, т.е. высоте O 1 E треугольника OO 1 C 1. Имеем OO 1 = 1; O 1 C = ; OC 1 =. Следовательно, O 1 E =

В единичном кубе A…D 1 найдите расстояние от точки A до плоскости BA 1 C 1. Ответ: Решение: Прямая AC параллельна плоскости BA 1 C 1. Следовательно, искомое расстояние равно расстоянию от центра O грани ABCD куба до плоскости BA 1 C 1. Из предыдущей задачи следует, что это расстояние равно