УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.

Презентация:



Advertisements
Похожие презентации
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Advertisements

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ В ПРОСТРАНСТВЕ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
В кубе A…D 1 найдите угол между прямыми AC и BD 1. Ответ. 90 о. Куб 1.
Многогранники: типы задач и методы их решения. Домашняя задача В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный равнобедренный треугольник.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованная двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
1 Подготовка к ЕГЭ Задания С 2. Углом между наклонной и плоскостью называется угол между этой наклонной и ее проекцией на данную плоскость. Прямая, перпендикулярная.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
Урок 1 Угол между прямой и плоскостью. Углом между прямой, не перпендикулярной плоскости и плоскостью называется угол между этой прямой и ее проекцией.
Транксрипт:

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость. Считают также, что прямая, перпендикулярная плоскости, образует с этой плоскостью прямой угол.

В правильном тетраэдре ABCD найдите угол между прямой AD и плоскостью ABC. Ответ: Решение. Пусть E – середина ребра BC. Искомый угол равен углу DAE. В треугольнике DAE имеем: AD = 1, AE = DE = Используя теорему косинусов, получим

В правильной пирамиде SABCD, все ребра которой равны 1, найдите угол между прямой SA и плоскостью ABC. Ответ: 45 о. Решение: Искомый угол равен углу SAC. В треугольнике SAC имеем: SA = SC = 1, AC = Следовательно, искомый угол равен 45 о.

В правильной пирамиде SABCD, все ребра которой равны 1, найдите угол между прямой SA и плоскостью SBD. Ответ: 45 о. Решение: Искомый угол равен углу SOA, где O – середина BD. В прямоугольном треугольнике SOA имеем: SA = 1, AO = Следовательно, искомый угол равен 45 о.

В правильной пирамиде SABCD, все ребра которой равны 1, найдите угол между прямой AB и плоскостью SAD. Ответ: Решение. Пусть E, F – середины ребер AD и BC. Искомый угол равен углу SEF. В треугольнике SEF имеем: EF = 1, SE = SF = Используя теорему косинусов, получим

В правильной 6-ой пирамиде SA…F, боковые ребра которой равны 2, а ребра основания – 1, найдите угол между прямой SA и плоскостью ABC. Ответ: 60 о. Решение. Искомый угол равен углу SAD. Треугольник SAD равносторонний. Следовательно, = 60 о.

В правильной 6-ой пирамиде SA…F, боковые ребра которой равны 2, а ребра основания – 1, найдите угол между прямой AB и плоскостью SAF. Ответ: Решение. Пусть O – центр основания, G – середина AF. Искомый угол равен углу между прямой FO и плоскостью SAF. Опустим из точки O перпендикуляр OH на плоскость SAF. Тогда равен углу OFH. В треугольнике SOG имеем: OG =, SO =, SG =. Следовательно, OH =. В треугольнике OFH OH =, OF = 1. Следовательно,

В правильной 6-ой пирамиде SA…F, боковые ребра которой равны 2, а ребра основания – 1, найдите угол между прямой BC и плоскостью SAF. Ответ: Решение. Пусть O – центр основания, G – середина AF. Искомый угол равен углу между прямой AO и плоскостью SAF. Опустим из точки O перпендикуляр OH на плоскость SAF. Тогда равен углу OAH. Из решения предыдущей задачи имеем: OH =. В треугольнике OFH OF = 1, OH =. Следовательно,

В правильной 6-ой пирамиде SA…F, боковые ребра которой равны 2, а ребра основания – 1, найдите угол между прямой AC и плоскостью SAF. Ответ: 60 о. Решение. Пусть G, H – середины ребер AF, CD. Искомый угол равен углу SGH. Треугольник SGH равносторонний. Следовательно, = 60 о.