Воробьев Леонид Альбертович, г.Минск Алгебра и начала анализа, 10 класс. Решение простейших тригонометрических неравенств. 0.

Презентация:



Advertisements
Похожие презентации
Воробьев Леонид Альбертович, г.Минск Алгебра и начала анализа, 10 класс. Решение простейших тригонометрических неравенств. 0.
Advertisements

Воробьев Леонид Альбертович, г.Минск Алгебра и начала анализа, 10 класс. Решение простейших тригонометрических неравенств. 0.
Повторим значения синуса косинуса у π/2 90° 120° 2π/3 1 π/3 60° 135° 3π/4 π/4 45° 150° 5π/6 1/2 π/6 30° 180° π ° x /2 ½ 2π 360 (cost)
Синус sin t у = sin t – ордината точки М М( ) sin = π 6 11π 6 π6π6 1 2 sin = 11π Значение синуса -1 sin t 1 sin t 1.
Синус, косинус, тангенс и котангенс угла Алгебра 9 класс.
Синус, косинус и тангенс углов α и -α. 0 sin cos 1 sin - ордината точки поворота cos - абсцисса точки поворота 0 (под «точкой поворота» следует понимать.
Повторим значения синуса косинуса у π/2 90° 120° 2π/3 1 π/3 60° 135° 3π/4 π/4 45° 150° 5π/6 1/2 π/6 30° 180° π ° x /2 ½ 2π 360 (cost)
ОПРЕДЕЛЕНИЕ SIN,COS,TG,CTG Синусом угла α называется отношение ординаты точки В к R. Синусом угла α называется отношение ординаты точки В к R. Косинусом.
Тригонометрия. Радианная мера угла. Определение синуса и косинуса.
Определение синуса, косинуса, тангенса и котангенса углов поворота. Алгебра и начала анализа, 10 класс Воробьев Леонид Альбертович, г.Минск.
Решение простейших тригонометрических уравнений Тригонометрическими уравнениями называются уравнения, содержащие неизвестную переменную под знаком тригонометрической.
Решение простейших тригонометрических неравенств.
Решение простейших тригонометрических уравнений. Учитель Горбунова В.А «Без уравнения нет математики как средства познания природы» академик П. С.Александров.
ОСНОВНЫЕ ПОНЯТИЯ ТРИГОНОМЕТРИИ Выполнил : ученик 10 «А» класса МОУ КСОШ Курныков Александр.
ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ ЧИСЛОВОГО АРГУМЕНТА. Угол в 1 радиан это такой центральный угол, длина дуги ко­ торого равна радиусу окружности. Радианная.
Понятие обратной функции. Определение обратных тригонометрических функций. Алгебра и начала анализа, 10 класс. Воробьев Леонид Альбертович, г.Минск.
Решение тригонометрических уравнений. Виды тригонометрических уравнений.
Решение простейших тригонометрических неравенств.
Стехов Игорь 10 класс. Отметить на линии синусов число а. Отметить все синусы, которые больше(меньше) числа а. Выделить на единичной тригонометрической.
Тригонометрия. Единичная окружность А В С D M K E H L P.
Транксрипт:

Воробьев Леонид Альбертович, г.Минск Алгебра и начала анализа, 10 класс. Решение простейших тригонометрических неравенств. 0

Под простейшими тригонометрическими неравенствами понимают неравенства вида:,где t – выражение с переменной, a. Под знаком следует понимать любой из четырёх знаков неравенств:,,.

Для решения тригонометрических неравенств необходимо уметь работать с тригонометрическим кругом: sint cost t x y sint - ордината точки поворотаcost - абсцисса точки поворота (под «точкой поворота» следует понимать – «точку единичной тригонометрической окружности, полученной при повороте на t радиан от начала отсчета»)

x y –1–1 –1–1 a 1 a –1 Аналогично, неравенство sin t<a, при a –1 также не имеет решений. Неравенство sin t > a, при a 1 не имеет решений. На окружности не существует точек поворота, ординаты которых больше единицы. На окружности не существует точек поворота, ординаты которых меньше минус единицы.

x y –1–1 –1–1 a 1 a –1 Если знак неравенства нестрогий, то неравенство sin t a, при a 1 выполняется, при Аналогично, неравенство sin t a, при a –1 будет верное, если

x y t =arcsin a t = –arcsin a a –1–1 –1–1 2 Если a (–1;1), то неравенство sin t a выполняется либо на дуге (>, ), A D B C либо на дуге (<, ). Выбор скобок в записи ответа зависит от знака неравенства Дугу CBA можно записать в виде промежутка [(arcsin a +2 n ; –arcsin a +2 n )], n, а дугу ADC – в виде промежутка [( –arcsin a +2 k ; arcsin a k )], k,

Пример. Решите неравенство sin ( 2x–3 )>– 0,5. x y –1–1 –1–1 Решение. Выполняем рисунок: или Ответ:

x y –1–1 –1–1 a –1 a 1 Для неравенство cos t>a, при a 1 и cos t < a, при a –1 проведите рассуждения самостоятельно (под руководством учителя). t Ø

x y –1–1 –1–1 a 1 a –1 Если знак неравенства нестрогий, то неравенство cos t a, при a 1 выполняется, при Аналогично, неравенство cos t a, при a –1 будет верное, если

x y –1–1 –1–1 2 Если a (–1;1), то неравенство cos t a выполняется либо на дуге (>, ), A D B C либо на дуге (<, ). В первом случае Во втором, Выбор скобок в записи ответа зависит от знака неравенства 0 t =arccos a t = –arccos a a

Пример. Решите неравенство. x y –1–1 –1–1 Решение. Выполняем рисунок: или Ответ:

x y –1–10 линия тангенсов a Так как E ( tg )=, то неравенство tgt a всегда имеет решение. –1–1 Значению tgt= a соответствуют числа t (величины углов поворота в радианной мере), попадающие в две точки тригонометрического круга. t =arctg a+π t =arctg a Для неравенств tgt > a или tgt a получаем две дуги. Обе они могут быть записаны в виде промежутка: Для неравенств tgt < a или tgt a получаем две дуги. 0 Обе они могут быть записаны в виде промежутка: Выбор скобок в записи ответа зависит от знака неравенства

t =arcctg a+π x y –1–1 0 линия котангенсов a –1–1 Проследите за ходом решения и выведите общие формулы для неравенств: Так как E ( tg )=, то неравенство сtgt a всегда имеет решение. 0 ctg t > a ctg t a ctg t < a ctg t a t =arcctg a

Пример. Решите неравенство x y –1–10 линия тангенсов –1–1 0 Решение. Применив к левой части неравенства формулу тангенса разности, получим равносильное неравенство: Выполняем рисунок. Получаем: Ответ: