Характер теплового движения в кристаллах. Кристаллическая структура равновесное состояние системы атомов, отвечающее минимуму потенциальной энергии. В.

Презентация:



Advertisements
Похожие презентации
Экспериментальные данные. Теория Ландау сверхтекучей бозе-жидкости. Возбуждения. Гидродинимика Сверхтекучесть изотопа 4 He.
Advertisements

Модель свободных электронов, также известна как модель Зоммерфельда или модель Друде-Зоммерфельда, простая квантовая модель поведения валентных электронов.
СТРОЕНИЕ ТРЕХ АГРЕГАТНЫХ СОСТОЯНИЙ ТЕЛА УЧЕНИЦА 10 «А» КЛАССА ДАДАЕВА ЛИАНА.
Бозе-эйнштейновская конденсация. Возбуждения в неидеальном бозе-газе. Сверхтекучесть. Критерий сверхтекучести Ландау 1.8. Конденсация Бозе – Эйнштейна.
Квантовая теория электромагнитного излучения вещества Тепловое излучение.
Квантовая физика Марков Павел 12 ОЭ. . Квантовая физика раздел теоретической физики, в котором изучаются квантово- механические и квантово-полевые системы.
В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые.
МЕХАНИКА МЕХАНИЧЕСКИЕ ВОЛНЫ. Колебательные процессы – это периодические (или почти периодические) процессы, которые повторяются через одинаковые промежутки.
Раздел современной физики Квантовая физика изучает свойства, строение атомов и молекул, движение и взаимодействие микрочастиц.
Молекулярная физика. Основы мкт Молекулярно-кинетическая теория Масса и размеры молекул Количество вещества Строение газов, жидкостей и твердых тел Идеальный.
Квантовая физика- раздел современной физики, в котором изучаются свойства, строение атомов и молекул, движение и взаимодействие микрочастиц.
Адиабатический процесс. Уравнение адиабаты При выводе основного уравнения молекулярно- кинетической теории идеальных газов (2.4) мы предполагали, что столкновения.
Классификация фазовых переходов. Переход парамагнетик – ферромагнетик. Поле упорядочения. Обменное взаимодействие 1.1. Фазовые переходы в системе многих.
Уравнение Ми-Грюнайзена Выполнила: Пятницкая Д., гр Научный руководитель: Кузькин В. А.
Механические волны Лекцию подготовил Волчков С.Н..
Электромагнитные излучения небесных тел. Электромагнитное излучение небесных тел основной источник информации о космических объектах. Исследуя электромагнитное.
ТЕРМОДИНАМИЧЕСКИ РАВНОВЕСНОЕ ТЕПЛОВОЕ ИЗЛУЧЕНИЕ Тепловое излучение - электромагнитное излучение, возникающее за счет внутренней энергии излучающего тела.
В конце XIX – начале XX в. Был открыт и изучен экспериментально ряд явлений, таких, как тепловое излучение, фотоэффект Комптона и т.д. Эти явления нельзя.
ДВИЖЕНИЕ СВОБОДНОЙ ЧАСТИЦЫ В ОДНОМЕРНОЙ ПОТЕНЦИАЛЬНОЙ ЯМЕ 1. Движение свободной частицы 2. Частица в одномерной прямоугольной яме с бесконечными внешними.
Электрофизические свойства проводниковых материалов Автор Останин Б.П. Эл. физ. свойства проводниковых материалов. Слайд 1. Всего 12 Конец слайда.
Транксрипт:

Характер теплового движения в кристаллах. Кристаллическая структура равновесное состояние системы атомов, отвечающее минимуму потенциальной энергии. В состоянии покоя сумма сил, действующих на каждый атом кристалла со стороны других атомов, равна нулю. Атомы в кристаллах совершают колебания около фиксированных положений равновесия. Характер этих тепловых колебаний весьма сложен. Частица взаимодействует с соседними частицами, то есть колебания передаются от атома к атому и распространяются в кристалле в виде волны.

. Благодаря тому, что каждый атом сильно связан с соседями, он сам по себе, в одиночку двигаться не может - он заставляет двигаться в такт себе и соседей. В результате, микроскопическое движение в кристалле надо представлять себе не как движение отдельных атомов, а как определенные коллективные, синхронные колебания большого числа атомов. Такие колебания называются фононами. Именно фононы являются, как говорят физики, истинными степенями свободы в кристаллическом твердом теле. В терминах фононов можно описать и звуковые волны, и теплоемкость кристалла, и сверхпроводимость некоторых материалов, и, наконец, самые разнообразные микроскопический явления в кристалле.

. Некогерентные, т.е. никак не скоррелированные, независимые фононы есть в кристалле всегда. Они имеют самые разные длины волн, распространяются в самых разных направлениях, накладываются друг на друга - и в результате приводят лишь к мелкому, хаотичному дрожанию отдельных атомов. Однако если мы теперь создадим большое число когерентных фононов (т.е. фононов одного сорта - с одинаковой длиной волны, двигающихся в одинаковом направлении в одинаковой фазе), то получится монохроматическая волна деформации, распространяющаяся по кристаллу. Каждому колебанию соответствует одно состояние фонона с импульсом и энергией, k - волновой вектор

. Итак, колебания атомов кристалла заменяются распространением в веществе системы звуковых волн, квантами которых и являются фононы. Спин фонона равен нулю (в единицах ). Фонон принадлежит к числу бозонов и описывается статистикой Бозе-Эйнштейна. Фононы и их взаимодействие с электронами играют фундаментальную роль в современных представлениях о физике сверхпроводников, процессах теплопроводности, процессах рассеяния в твердых телах. Модель кристалла металла можно представить как совокупность гармонически взаимодействующих осцилляторов, причем наибольший вклад в их среднюю энергию дают колебания низких частот, соответствующие упругим волнам, квантами которых и являются фононы.звуковых волн Спинбозонов статистикой Бозе-Эйнштейна взаимодействие с электронами сверхпроводников теплопроводности

.. Колебаниям решетки, согласно квантовой механике, можно сопоставить квазичастицы – фононы. Минимальная порция энергии, которую может поглотить или испустить кристаллическая решетка при тепловых колебаниях, соответствует на этом рисунке переходу с одного энергетического уровня на другой. Она равна h ν и является энергией фонона. Таким образом между светом и тепловыми колебаниями кристаллической решетки можно провести аналогию – упругие волны рассматриваются как распространение неких квазиупругих частиц – фононов.

, Фонон, в отличии от обычных частиц, может существовать лишь в некоторой среде, которая пребывает в состоянии теплового возбуждения. Нельзя вообразить фонон, который распространялся бы в вакууме, поскольку он описывает квантовый характер тепловых колебаний решетки и навечно замкнут в кристалле. Корпускулярный аспект малых колебаний атомов решетки кристалла приводит к понятию фонона, и распространение упругих тепловых волн в кристалле можно рассматривать как перенесение фононов.

. Теория тепловых волн в кристалле была разработана Дебаем. Квантовый характер тепловых волн, т.е. их дискретность проявляется при температуре, которая называется характеристическая температура Дебая, где - максимальная частота тепловых колебаний частиц, k - постоянная Больцмана. Величину называют энергией Дебая. Для большинства твёрдых тел температура Дебая 100 К. Поэтому почти все твёрдые тела в обычных условиях не проявляют квантовых особенностей. Температура Дебая – одна из важнейших характеристик кристалла.

. В физике твёрдого тела широко используется понятие фононного газа, т. е. большого числа независимых квазичастиц, находящихся в объёме твёрдого тела. При поглощении тепловой энергии твёрдым телом растёт интенсивность колебаний атомов. Внутренняя энергия твёрдого тела складывается из энергии основного состояния решётки и энергии фононов. По теории Дебая, возбуждённое состояние решётки можно представить как идеальный газ фононов, свободно движущихся в объёме кристалла. В определённом интервале температур фононный газ подобен идеальному газу.

Теплоёмкость кристалла. Классическая теория. Под теплоёмкостью твёрдого тела, обладающего объёмом V, подразумевают величину U – внутренняя энергия, являющаяся суммой колебательного движения частиц, находящихся в узлах кристаллической решётки, и потенциальной энергии их взаимодействия.

. Cредняя энергия гармонического осциллятора согласно классической статистической механике равна, причём приходится на кинетическую энергию и столько же на потенциальную. Моль вещества в кристаллической решётке содержит N А свободных частиц, имеет 3N А степеней свободы и обладает энергией

. Тогда В кристалле теплоёмкость при постоянном объёме мало отличается от теплоёмкости при постоянном давлении, так что можно положить и говорить просто о теплоёмкости твёрдого тела Это утверждение носит название закона Дюлонга и Пти. Закон выполняется в определённом интервале температур и несправедлив при низких температурах.

Теплоёмкость кристалла. Квантовая теория. Модель Эйнштейна. Эйнштейн отождествил кристаллическую решётку из N атомов с системой 3N независимых гармонических осцилляторов. Приняв, что распределение осцилляторов по состояниям с различной энергией подчиняется закону Больцмана, можно найти среднюю энергию осциллятора

. Тогда внутренняя энергия кристалла Теплоёмкость Если, то из формулы следует закон Дюлонга и Пти

Теплоёмкость кристалла. Квантовая теория. Модель Дебая. При низких температурах модель Эйнштейна лишь качественно предсказывает изменение теплоёмкости. Несоответствие экспериментальных данных с теорией Эйнштейна устранил Дебай. Он учёл, что твёрдое тело обладает целым спектром частот. Представление Эйнштейна о том, что все осцилляторы имеют одну и ту же частоту колебаний является чрезмерно упрощённым.

Теплоёмкость кристалла. Квантовая теория. Модель Дебая. Согласно модели Дебая, при низкой температуре теплоёмкость твёрдого тела определяется формулой: - характеристическая температура Дебая. Формула носит название закона кубов Дебая

Описано новое явление в конденсированных средах «перепрыгивание» фононов из одного твердого тела в другое через пустоту. За счет него звуковая волна может преодолевать тонкие вакуумные зазоры, а тепло может передаваться через вакуум в миллиарды раз эффективнее, чем при обычном тепловом излучении.