Доклад на тему Полевые транзисторы Журкин Д.В. Спирин О.В. гр
Устройство МДП транзисторов Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод (затвор) отделен от активной области диэлектрической прослойкой (изолятором). Основным элементом для этих транзисторов является структура металл-диэлектрик- -полупроводник. МДП-транзистор изготавливается на монокристаллическом п/п (подложке). Две сильнолигированные области противоположного с подложкой типа проводимости: исток и сток. Область, находящаяся под затвором между истоком и стоком: канал. Диэлектрический слой, расположенный между затвором и каналом: подзатворный диэлектрик.
МДП-транзистор В полевых транзисторах для реализации транзисторного эффекта применяется только один тип носителей. По этой причине полевые транзисторы называются униполярными. Физической основой работы МДП транзистора является эффект поля. В структурах МДП внешнее поле обусловлено приложенным напряжением на металлический электрод (затвор) относительно полупроводниковой подложки. В зависимости от знака и величины приложенного напряжения различают три состояния приповерхностной области полупроводника: обогащение, обеднение и инверсия. Обогащение: Этому состоянию соответствует знак напряжения на металлическом электроде (затворе), притягивающий основные носители (для n-типа, V G > 0, ψs > 0).
Обеднение: Этому состоянию соответствует небольшое по величине напряжение, отталкивающее основные носители (для n-типа, V G < 0, ψs < 0). Инверсия: Такому состоянию соответствует большое по величине напряжение на затворе, соответствующее значительным изгибам зон и вызывающее обогащение поверхности неосновными носителями заряда (для n-типа, V G
Характеристики МОП ПТ в области плавного канала Рассмотрим п/п представленный на рисунке со следующими условиями: 1. Токи через р n переходы истока, стока и подзатворного диэлектрика равны нулю. 2. Подвижность электронов μn постоянна по глубине и длине L инверсионного канала и не зависит от напряжения на затворе V GS и на стоке V DS. 3. Канал плавный, то есть в области канала нормальная составляющая электрического поля Еz существенно больше тангенциальной Еy.
Ток в канале МДП транзистора, изготовленного на подложке р типа, обусловлен свободными электронами, концентрация которых n(z). Электрическое поле Еу обусловлено напряжением между истоком и стоком V DS. Согласно закону Ома, плотность тока: где V – падение напряжения от истока до точки канала с координатами (x, y, z). Полный ток канала I D будет равен: Уравнение электронейтральности для зарядов в МДП-транзисторе на единицу площади:
Полный заряд на металлической обкладке МДП конденсатора Qm равен: где Vox – падение напряжения на окисном слое, Сox – удельная емкость подзатворного диэлектрика. Описание порогового напряжения V Т как напряжения на затворе V GS, соответствующего открытию канала в равновесных условиях: Уравнение, описывающее вольт амперную характеристику полевого транзистора в области плавного канала:
Характеристики МОП ПТ в области отсечки По мере роста напряжения исток сток V DS в канале может наступить такой момент, когда произойдет смыкание канала, т.е. заряд электронов в канале в некоторой точке станет равным нулю. Это соответствует условию: Поскольку максимальная величина напряжения V(y) реализуется на стоке, то смыкание канала или отсечка произойдет у стока. Напряжение стока V DS, необходимое для смыкания канала, называется напряжением отсечки V* DS. С ростом напряжения стока V DS точка канала, соответствующая условию отсечки, сдвигается от стока к истоку. В первом приближении при этом на участке плавного канала от истока до точки отсечки падает одинаковое напряжение, не зависящее от напряжения исток сток.
Выражение для тока стока: Соотношение представляет собой запись вольт-амперной характеристики МДП транзистора в области отсечки. Зависимости тока стока I DS от напряжения на затворе V GS называются обычно переходными характеристиками, а зависимости тока стока I DS от напряжения на стоке V DS – проходными характеристиками транзистора.
При значительных величинах напряжения исток сток и относительно коротких каналах (L = 10÷20 мкм) в области отсечки наблюдается эффект модуляции длины канала. При этом точка отсечки смещается к истоку и напряжение отсечки V DS * падает на меньшую длину канала. Это вызовет увеличение тока I DS канала. ВAX МДП транзистора с учетом модуляции длины канала имеет следующий вид:
Эффект смещения подложки Приложенное напряжение между истоком и подложкой Vss при условии наличия инверсионного канала падает на обедненную область индуцированного р n перехода. В этом случае при прямом его смещении будут наблюдаться значительные токи, соответствующие прямым токам р n перехода. Эти токи попадут в стоковую цепь и транзистор работать не будет. Поэтому используется только напряжение подложки, Vss соответствующее обратному смещению индуцированного и истокового р n перехода. По полярности это будет напряжение подложки противоположного знака по сравнению с напряжением стока. При приложении напряжения канал-подложка происходит расширение ОПЗ и увеличение заряда ионизованных акцепторов:
Поскольку напряжение на затворе V GS постоянно, то постоянен и заряд на затворе МДП транзистора Qm. Следовательно, из уравнения электронейтральности вытекает, что если заряд акцепторов в слое обеднения Q B вырос, заряд электронов в канале Qn должен уменьшиться. С этой точки зрения подложка выступает как второй затвор МДП транзистора, поскольку регулирует также сопротивление инверсионного канала между истоком и стоком. При возрастании заряда акцепторов в слое обеднения возрастет и пороговое напряжение транзистора V Т. Изменение порогового напряжения будет равно:
Малосигнальные параметры МДП-транзистора Крутизна переходной характеристики S: Эта величина характеризуется изменением тока стока при единичном увеличении напряжения на затворе при постоянном напряжении на стоке. Внутреннее сопротивление Ri: Оно характеризует изменение напряжения в выходной цепи, необходимое для единичного увеличения тока стока при неизменном напряжении на затворе.
Коэффициент усиления μ: Этот коэффициент характеризуется изменением напряжения в выходной цепи при единичном изменении напряжения во входной и неизменном токе стока. Очевидно, что в области плавного канала крутизна S и дифференциальное сопротивление Ri будут иметь значения: При этом коэффициент усиления μ, равный их произведению, всегда меньше единицы: Таким образом полевой МДП транзистор как усилитель не может быть использован в области плавного канала.
Влияние типа канала на ВАХ-и МДП-транзисторов Вид ВАХ МДП-транзистора в значительной мере зависит от типа п/п-ой подложки и типа инверсионного канала. Канал, который отсутствует при нулевом напряжении на затворе V G =0, а при увеличении V G появляется - называется индуцированным. Канал, который при нулевом напряжении на затворе V G =0 уже сформировался - называется встроенным. МДП-транзистор с индуцированным каналом при нулевом напряжении на затворе всегда закрыт. Если же канал встроенный, то при V G =0 такой транзистор всегда открыт. ВАХ n-канального МДП-транзистора с индуцированным каналом:
ВАХ p-канального МДП-транзистора с индуцированным каналом: ВАХ n-канального МДП-транзистора со встроенным каналом:
ВАХ p-канального МДП-транзистора со встроенным каналом:
ВАХ МДП-транзистора в области сильной и слабой инверсии Для области сильной инверсии, т.е. в приближении плавного канала, ВАХ МДП транзистора выглядит следующим образом: Ее вид совпадает с ВАХ для полевого транзистора в области плавного канала:
Множитель n – число, характеризующее отношение емкости поверхностных состояний Cxx и емкости обедненной области С В к емкости подзатворного диэлектрика Сox. Значения n могут лежать для реальных МДП структур в диапазоне 1÷5. Величина m равна: C B *–емкость обедненной области при пороговом значении поверхностного потенциала ψs, 2φ0. ВАХ МДП транзистора для области слабой инверсии:
МДП-Транзистор как элемент памяти Рассмотрим RC цепочку, состоящую из последовательно соединенных нагрузочного сопротивления RH 1 МОм и полевого транзистора с изолированным затвором, приведенную на рисунках а, б. Если в такой схеме МДП-транзистор открыт, сопротивление его канала составляет десятки или сотни Oм, все напряжение питания падает на нагрузочном сопротивлении RН и выходное напряжение Uвых близко к нулю. Если МДП-транзистор при таком соединении закрыт, сопротивление между областями истока и стока велико (сопротивление р n перехода при обратном включении), все напряжение питания падает на транзисторе и выходное напряжение Uвых близко к напряжению питания Uпит. Как видно из приведенного примера, на основе системы резистор – МДП-транзистор легко реализуется элементарная логическая ячейка с двумя значениями: ноль и единица. МДП транзистор в качестве элемента запоминающего устройства а) открытое состояние; б) закрытое состояние
МДП-Транзистор как элемент энергозависимой памяти. Одним из недостатков приведенной элементарной ячейки информации является необходимость подведения на все время хранения информации напряжения к затворному электроду. При отключении напряжения питания записанная информация теряется. Этого недостатка можно было бы избежать, если в качестве МДП-транзистора использовать такой транзистор, у которого регулируемым образом можно было бы менять пороговое напряжение VT.
Конструкция МНОП-транзистор На рисунке приведена схема, показывающая основные конструктивные элементы МНОП- транзистора. В МНОП ПТ в качестве подзатворного диэлектрика используется двухслойное покрытие. В качестве первого диэлектрика используется туннельно прозрачный слой (dox < 50 Å) двуокиси кремния. В качестве второго диэлектрика используется толстый (d 1000 Å) слой нитрида кремния. Нитрид кремния Si3N4 имеет глубокие ловушки в запрещенной зоне и значение диэлектрической постоянной в два раза более высокое, чем диэлектрическая постоянная двуокиси кремния SiO2. Ширина запрещенной зоны нитрида Si3N4 меньше, чем ширина запрещенной зоны окисла SiO2.
Зонные диаграммы МНОП транзистора в различных режимах работы На рисунке а приведена зонная диаграмма МНОП транзистора. Рассмотрим основные физические процессы, протекающие в МНОП транзисторе при работе в режиме запоминающего устройства. При подаче импульса положительного напряжения +VGS на затвор вследствие разницы в величинах диэлектрических постоянных окисла и нитрида в окисле возникает сильное электрическое поле. Это поле вызывает, как показано на рисунке б, туннельную инжекцию электронов из полупроводника через окисел в нитрид. Инжектированные электроны захватываются на глубине уровня ловушек в запрещенной зоне нитрида кремния, обуславливая отрицательный по знаку встроенный в диэлектрик заряд. После снятия напряжения с затвора инжектированный заряд длительное время хранится на ловушечных центрах, что соответствует существованию встроенного инверсионного канала. При подаче импульса отрицательного напряжения -VGS на затвор происходит туннелирование электронов с ловушек в нитриде кремния в зону проводимости полупроводника, как показано на рисунке в. При снятии напряжения с затвора зонная диаграмма МНОП структуры снова имеет вид, как на рисунке а, и инверсионный канал исчезает. а) напряжение на затворе равно нулю, ловушки не заполнены б;) запись информационного заряда; в) стирание информационного заряда
МОП-Транзистор с плавающим затвором Полевой транзистор с плавающим затвором по принципу работы и устройству похож на МНОП транзистор. Только в транзисторах с плавающим затвором инжектированный заряд хранится на плавающем затворе, находящемся между первым и вторым подзатворными диэлектрическими слоями. Схема, поясняющая устройство МОП ПТ с плавающим затвором, приведена на рисунке б. В качестве материала для плавающего затвора используется поликристаллический кремний, легированный фосфором.
Зонная диаграмма МОП ПТ с плавающим затвором На рисунке a приведена зонная диаграмма такого транзистора. Рисунок б поясняет механизм записи информационного заряда путем туннельной инжекции из полупроводника на плавающий затвор. На рисунке в приведена зонная диаграмма МОП ПТ с плавающим затвором после записи заряда и снятия напряжения с затвора. Возможно частичное растекание наполненного информационного заряда из-за туннелирования электронов с плавающего затвора обратно в полупроводник. а) напряжение на затворе VGS равно нулю, плавающий затвор не заряжен; б) процесс записи информационного заряда импульсом напряжения +VGS; в) МОП ПТ при нулевом напряжении на затворе в режиме хранения информационного заряда
Основные соотношения для МОП ПТ с плавающим затвором Рассмотрим основные соотношения, определяющие характер накопления инжектированного заряда на плавающем затворе полевого транзистора. Величина заряда Qox(τ) равна: Как видно из зонной диаграммы, инжекция носителей из полупроводника через первый слой окисла на плавающий затвор осуществляется путем прямого туннелирования через трапецеидальный барьер. Величина туннельного тока I(t) описывается соотношением: где I(t) – величала инжекционного тока в момент времени t. Постоянные величины А и В, входящие в уравнение, зависят от типа полупроводника и высоты потенциальных барьеров на границе.
Основные соотношения для МОП ПТ с плавающим затвором Накапливаемый на плавающем затворе инжектированный заряд Q(τ) будет вызывать уменьшение напряженности электрического поля Еоx в первом диэлектрике. Величина электрического поля Еох, обуславливающая туннелирование : Из последних трёх уравнений следует, что при малых временах τ наполненный заряд Q(τ) мал и линейно возрастает со временем τ, поскольку поле в окисле Еох и туннельный ток I(t) постоянны. При больших временах наступает насыщение наполнения инжектированного заряда Q(τ). Последние три соотношения позволяют на основе расчета выбрать наиболее оптимальные режимы записи и стирания информационного заряда.
Полевой транзистор с затвором в виде р n перехода Прибор состоит из области с проводимостью n- (или р-) типа, имеющей омические контакты, называемые истоком и стоком, и двух областей р- (или n-) типа, называемых затворами. На рис. 1,а показан случай нулевого напряжения на всех электродах. За счет наличия обедненных областей вблизи р- n-переходов толщина проводящего канала между истоком и стоком меньше геометрического сечения n-области. Если к затворам приложить обратное смещение, то размеры областей пространственного заряда (ОПЗ) увеличиваются и толщина проводящего канала еще более уменьшается ( рис. 1,б). При приложении к стоку положительного по отношению к истоку напряжения по каналу течет ток основных носителей (электронов), а толщина ОПЗ у стокового конца затвора увеличивается вследствие возрастания обратного напряжения между затвором и каналом (рис. 1, в).
Таким образом, возрастание приводит к увеличению сопротивления канала за счет уменьшения горловины вблизи стока. При достаточно больших значениях области пространственного заряда смыкаются (рис. 1,г) и дальнейшее увеличение практически не вызывает возрастания тока (режим насыщения). Напряжение между затвором и стоком, соответствующее смыканию ОПЗ, называется напряжением насыщения. Следует отметить, что канал может быть полностью перекрыт только при =0. При работе прибора в режиме насыщения вблизи стока существует очень узкая проводящая область, в которой плотность тока и электрическое поле велики. На стоковых характеристиках ПТУП (рис. 2,а) точки пересечения штриховой линии с кривыми (/) соответствуют началу режима насыщения.
Вольт-амперные характеристики в ПТ с затвором в виде р n На практике при насыщении все же наблюдается незначительное возрастание тока с ростом (рис. 2,б). Это возрастание связано с распространением ОПЗ по направлению к стоковому контакту и частично с увеличением электрического поля в канале. За счет расширения области смыкания в сторону истока стока возрастает так, как если бы длина затворов уменьшалась, а толщина канала оставалась постоянной. Это явление, называемое эффектом укорочения канала, определяет конечную величину сопротивления канала при увеличении.
Микроминиатюризация МДП приборов Полевые приборы со структурой металл – диэлектрик – полупроводник в силу универсальности характеристик нашли широкое применение в интегральных схемах (ИС). Одна из основных задач микроэлектроники заключается в повышении степени интеграции и быстродействия интегральных схем. Для ИС на МДП приборах благодаря чрезвычайно гибкой технологии их изготовления эта задача решается несколькими путями. Параметры прибора (схемы) n-МОП с обогаще нной нагрузко й, 1972 МОП, Длина канала L, мкм 621-0,60,13 Поперечная диффузия L D, мкм 1,40,4 Глубина p-n переходов x B, мкм 2,00,80,07-0,13 Толщина затворного окисла d ox, нм Напряжение питания V пит, В Минимальная задержка вентиля, нс ,5 Мощность на вентиль Р, мВт 1,50,4 Количество транзисторов в процессоре Intel 2,5 тыс80 тыс1,2 млн42 млн
Модель Год выпуска ТранзисторыТех. процесс Тактовая частота мкм108 КГц мкм200 КГц мкм2 МГц мкм5-10 МГц ,5 мкм6-12,5 МГц ,5-1 мкм16-33 МГц 486DX ,6 мкм МГц Pentium ,8-0,35 мкм МГц Pentium II ,35-0,25 мкм МГц Pentium III ,25-0,13 мкм МГц Pentium ,18-0,13 мкм>1400 МГц Таблица 4. Микроминиатюризация процессоров Intel
P.S применение ПТ Полевой транзистор - сенсорный датчик. Слово "сенсор" означает чувство, ощущение, восприятие. Поэтому можем считать, что в нашем эксперименте полевой транзистор будет выступать в роли чувствительного элемента, реагирующего на прикосновение к одному из его выводов. Помимо транзистора (рис. 3), например, любого из серии КП103, понадобится омметр с любым диапазоном измерений. Подключите щупы омметра в любой полярности к выводам стока и истока - стрелка омметра покажет небольшое сопротивление этой цепи транзистора. Затем коснитесь пальцем вывода затвора. Стрелка омметра резко отклонится в сторону увеличения сопротивления. Произошло это потому, что наводки электрического тока изменили напряжение между затвором и истоком. Увеличилось сопротивление канала, которое и зафиксировал омметр.
Полевой транзистор - индикатор поля. Немного измените предыдущий эксперимент - приблизьте транзистор выводом затвора (либо корпусом) возможно ближе к сетевой розетке или включенному в нее проводу работающего электроприбора. Эффект будет тот же, что и в предыдущем случае - стрелка омметра отклонится в сторону увеличения сопротивления. Оно и понятно - вблизи розетки или вокруг провода образуется электрическое поле, на которое и среагировал транзистор. В подобном качестве полевой транзистор используется как датчик устройств для обнаружения скрытой электропроводки или места обрыва провода в новогодней гирлянде - в этой точке напряженность поля возрастает.