Параллельность прямых и плоскостей
Определение Две прямые в пространстве называются параллельными, если они не пересекаются и лежат в одной плоскости. Значит, через две параллельные прямые можно провести плоскость и только одну. a b a ΙΙ b
Теорема Через любую точку пространства, не лежащую на данной прямой, можно провести прямую, параллельную данной, и только одну. Дано: a, M не принадлежит a Доказать: 1. через прямую a можно провести прямую b ΙΙ a. 2. прямая b -единственная a V M b
Если одна из параллельных прямых пересекает плоскость, то и вторая прямая пересекает эту плоскость. ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПРЯМЫХ Если две прямые параллельны третьей прямой, то они параллельны между собой.
СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ 1. Определение 2. Признак 3. Свойство 1. a b Две прямые называются скрещивающимися, если они не пересекаются и лежат в разных плоскостях.
Признак скрещивающихся прямых Если b є α, a α = M, M є b, то прямые a и b скрещиваются. a b α M
Если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то прямые скрещиваются. C A B D
Свойство скрещивающихся прямых Через каждую из скрещивающихся прямых можно провести плоскость, параллельную другой прямой.
Взаимное расположение прямой и плоскости в пространстве 1. Прямая и плоскость имеют одну общую точку.
Взаимное расположение прямой и плоскости в пространстве 2. Прямая и плоскость имеют две общие точки.
Расположение прямой и плоскости 3. Прямая и плоскость не имеют общих точек.
Расположение прямой и плоскости 1. Если прямая и плоскость имеют одну общую точку, то прямая пересекает эту плоскость. 2. Если прямая и плоскость имеют две общие точки, то все точки этой прямой лежат в плоскости, то есть прямая лежит в плоскости. 3. Если прямая и плоскость не имеют общих точек, то прямая параллельна плоскости.
Признак параллельности прямой и плоскости Если прямая, не лежащая в плоскости, параллельна какой-нибудь прямой плоскости, то она параллельна этой плоскости. a b α
Угол между скрещивающимися прямыми Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, параллельными данным скрещивающимся. a b b1b1 a1a1 (a,b) = ( a 1,b 1 )
Параллельность плоскостей 1. Определение. 2. Признак. 3. Свойства. ОПРЕДЕЛЕНИЕ Плоскости называются параллельными, если они не имеют общих точек. ПРИЗНАК Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то плоскости параллельны.
Презентацию выполнила: Катмакова Александра