Introduction to Mathematics & Statistics. SETS (1) A set is a well-specified collection of elements These elements can be finite or infinite Finite set:

Презентация:



Advertisements
Похожие презентации
Time-Series Analysis and Forecasting – Part IV To read at home.
Advertisements

Sequences Sequences are patterns. Each pattern or number in a sequence is called a term. The number at the start is called the first term. The term-to-term.
Multiples Michael Marchenko. Definition In mathematics, a multiple is the product of any quantity and an integer. in other words, for the quantities a.
The Law of Demand The work was done by Daria Beloglazova.
Michael Marchenko. In mathematics, a sequence is an ordered list of objects (or events). Like a set, it contains members (also called elements, or terms),
Linear Block Codes Mahdi Barhoush Mohammad Hanaysheh.
Exponential function. In mathematics, the exponential function is the function ex, where e is the number (approximately ) such that the function.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. The Integral chapter 6 The Indefinite Integral Substitution The Definite Integral.
Chap 8-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 8 Estimation: Single Population Statistics for Business and Economics.
Chap 4-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 4 Probability Statistics for Business and Economics 6 th Edition.
Time-Series Analysis and Forecasting – Part V To read at home.
AVL-Trees COMP171 Fall AVL Trees / Slide 2 Balanced binary tree * The disadvantage of a binary search tree is that its height can be as large as.
Inner Classes. 2 Simple Uses of Inner Classes Inner classes are classes defined within other classes The class that includes the inner class is called.
Here are multiplication tables written in a code. The tables are not in the correct order. Find the digit, represented by each letter.
Chap 9-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 9 Estimation: Additional Topics Statistics for Business and Economics.
Time-Series Analysis and Forecasting – Part II Lecture on the 5 th of October.
1/27 Chapter 9: Template Functions And Template Classes.
S9-1 PAT325, Section 9, February 2004 Copyright 2004 MSC.Software Corporation SECTION 9 DOUBLY CURVED SURFACES.
Chap 15-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 15 Nonparametric Statistics Statistics for Business and Economics.
Транксрипт:

Introduction to Mathematics & Statistics

SETS (1) A set is a well-specified collection of elements These elements can be finite or infinite Finite set: A = {1,2,3,4,5,6,7,8,9,10} Infinite set: B = {x | x>0} Membership to a set expressed as: a A Conversely: a A Empty set: A = { },also expressed as A =

SETS (2) Let A = {1,3,5,7}, B = {2,3,4,6,8} and C = {1,5}. Then it holds that: A C or C A, or else that C is a subset of A Let A = {1,2,3} and B = {4,5,6}. These two sets bear no common elements and are known as Disjoint Let A = {1,2,3,4,5} and B = {1,2,3,4,5}. Then these sets are called Equal

SET OPERATIONS Union: Let A = {2,3,6} and B = {4,3,5}; then their union is expressed as A U B = {2,3,4,5,6}. A U B = {x | x A or x B} Intersection: A B = {3}. A B = {x | x A and x B} Complement: Let A = {x | x 0) and Ā = {x | x < 0). If so, Ā is called the complementary set and A U Ā : R, where R is the set of all real numbers. Then it follows that: Ā = {x | x R and x A} Venn Diagrams

SETS OF NUMBERS Natural numbers: = {1, 2, 3, 4,.....} Integers:. = {0, 1, -1, 2, -2,.....} Rational numbers: = Real numbers: R R

THE VALUE OF MONEY (1): FUTURE VALUE Let us assume that one invests an amount of money at time zero (C 0 ) in an account for T years and that the going annual interest rate is r. Then, the value of this amount after the completion of T years shall equal: FV = C 0 (1+r) T where FV = Future Value However, the above assumes annual compounding of the interest, yet the latter could be compounded: Semiannually: FV = C 0 [1+(r/2)] 2T Quarterly: FV = C 0 [1+(r/4)] 4T Monthly: FV = C 0 [1+(r/12)] 12T Daily: FV = C 0 [1+(r/360)] 360T Continuously: FV = C 0 e rT

THE VALUE OF MONEY (2): FUTURE VALUE (B) In general, compounding an investment m times a year over many years provides wealth of FV = C 0 [1+(r/m)] mT

THE VALUE OF MONEY (2): PRESENT VALUE (A) Let us assume that an investor wishes to retain an amount C after T years of investment with the going annual interest rate equal to r. Then the amount of money he would have to invest now to obtain the amount C in the future is calculated as: PV = C T / (1 + r) T However, the above assumes annual compounding of the interest, yet the latter could be compounded: Semiannually: PV = C T/ [1+(r/2)] 2T Quarterly: PV = C T/ [1+(r/4)] 4T Monthly: PV = C T [1+(r/12)] 12T Daily: PV = C T [1+(r/360)] 360T Continuously: PV = C T e rT

THE VALUE OF MONEY (2): PRESENT VALUE (B) In case the expected cash flows are unequal in size, the present value is calculated as: PV = [C 1 / (1 + r) ] + [C 2 / (1 + r) ] 2 + [C 3 / (1 + r) ] 3 + [C 4 / (1 + r) ] 4 + [C 5 / (1 + r) ] 5 … [C T / (1 + r) ]

THE VALUE OF MONEY (3): SPECIAL CASES Perpetuity: constant stream of equal-sized cash-flows with no end PV = C / r Growing perpetuity PV = C / (r-g), where g is the rate of growth per period expressed as a percentage Annuity: level stream of regular payments that lasts for a fixed number of periods PV = C [ (1/r) – 1/(r(1+r) T ] Growing Annuity PV = C [ [1/(r-g)] – [1/(r-g)][(1+g)(1+r) T ]

EXPONENTIAL AND LOGARITHMIC FUNCTIONS x = a y log a x = y, a > 0 log a (x 1 x 2 ) = log(x 1 ) + log(x 2 ) log a (x 1 /x 2 ) = log(x 1 ) - log(x 2 ) log a a = 1 log a a x = x log a 1 = 0 log a x k = klog a x a x = e xlna (why??) lne = 1

LINEAR FUNCTIONS Y = aX + b These functions are called linear as their pictorial representation is given by a straight line The slope of a straight line is constant and can be calculated on the premises of the coordinates of two points on it. Let A (x 1,y 1 ) and B (x 2,y 2 ); then the slope is given by: m = (y 2- y 1 )/(x 2- x 1 ) If the slope and the coordinates of one point (x 0,y 0 ) are known, then the equation of a straight line can be given as: (y - y 0 )/(x - x 0 ) = m y = mx + (y 0 - m x 0 ) If two lines (let ε 1 and ε 2 ) are parallel to each other (ε 1 ε 2 ), then: m ε1 = m ε2 If two lines (let ε 1 and ε 2 ) are vertical to each other (ε 1 ε 2 ), then: m ε1 m ε2 =-1

NONLINEAR FUNCTIONS However, what happens when the function under question is not of a linear form? General form of quadratic equation: y = ax 2 + bx + c In this case the estimation of the slope (i.e. the rate of change over time) is facilitated through differential analysis

Differentiation Rules (1) Constant function rule then Power-function rule then Power-function rule generalized Sum-difference rule

Differentiation Rules (2) y = f(x) = lnx, then f(x) = 1/x, x>0 y = f(x) = e x, then f(x) = e x y = f(x) = a x, then f(x) = a x (lna)

Differentiation Rules (3) Product rule Quotion rule Chain rule

Maxima and minima First-derivative test f(x 0 ) = 0 A relative maximum if f(x 0 ) changes from positive to negative from the left of point x 0. A relative minimum if f(x 0 ) changes from negative to positive from the left of point x 0. Neither a relative maximum nor a relative maximum if f(x 0 ) has the same sign on both left and right of point x 0. Second derivative f(x), f(x)>0 means the slope tends to increase, f(x)<0 means the slope tends to decrease

Maxima and minima A second derivative test: If f(x 0 ) = 0 then at x 0 f(x 0 ) will be a)A relative maximum if f(x 0 ) < 0 (concavity) b)A relative minimum if f(x 0 ) > 0 (convexity)

Partial derivatives Ex and geometric interpretation Jacobian determinants

INTEGRATIONAL ANALYSIS The inverse process of differentiation Example: assume we know the growth rate of a population and we wish to establish its size at time t For any given function (let, f) differentiable in a domain (let Δ), the following holds: f(x)dx = f(x) + c, x Δ

Basic rules of integration (1) The power rule The exponentiation rule The logarithmic rule Augmented Exponentiation Rule Augmented Logarithmic Rule

Basic rules of integration (2) The integral of a sum The integral of a multiple Integration by substitution

Basic rules of integration (3) Integration through factorization

MATRIX ALGEBRA System of m linear equation and n variables Matrices as Arrays

DEFINITIONS Matrix: a two-dimensional vector (m x n), with m rows and n columns. Let matrices A (m a x n a ) and B (m b x n b ). A = B, if and only if: m a = m b, n a = n b and all their elements are equal. Square matrix Row-vector (1 x n) Column-vector (m x 1) Matrix-diagonal Triangular-up/-down matrix Identity matrix Null matrix

ADDING/SUBTRACTING MATRICES Possible only if the matrices dimensions are identical A [a ij ], B [b ij ] A ± B = [a ij ± b ij ] A + B = B + A A + (B + C) = (A + B) + C A + Ο = O + A = A A + (-A) = (-A) + A = O A – B = A + (-B) X + B = A X = A - B

MATRIX-MULTIPLICATION: MULTIPLYING MATRICES WITH NUMBERS Let A = [a ij ], B = [b ij ] k x A = [k x a ij ], k R (k + z) x A = k x A + z x A, k, z R k (A + B) = k x A + k x B, k R (k x z) A = k x (z x A), k, z R k x A = O k = 0, or A = O

MATRIX-MULTIPLICATION: MULTIPLYING MATRICES WITH MATRICES Consider the matrices A = [a ik ], B [b kj ] Let A m x n and B n x r We define as AxB = [c ij ], where: c ij = a i1 b 1j + a i2 b 2j + a i3 b 3j + …+ a in b nj Each element is the sum of the products of all n-elements of As i-th row multiplied with their corresponding n-elements of Bs j-th column

MULTIPLYING MATRICES WITH MATRICES: ESSENTIAL PROPERTIES As long as multiplication is possible: A(BC) = (AB)C A(B+C) = AB + AC (kA)(zB) = (kz)(AB) AO = OA = O AI = IA = A If A m x m, then one can estimate the following products: AA = A 2, AAA = A 3 et al A 1 = A A p A q = A p+q (A p ) q = A pq (kA) p = k p A p, k R If AB = BA, then the following hold: (A±B) 2 = A 2 ± 2AB + B 2 (A ±B) 3 = A 3 ±3A 2 B + 3AB 2 ±B 3 A 2 – B 2 = (A – B)(A + B) A 3 – B 3 = (A-B)(A 2 + AB +B 2 )

INVERTIBLE MATRICES AB = BA = I The above holds if and only if A, B are m x m A = invertible B = inverse Each matrix has a unique inverse: AA -1 = A -1 A = I If A, b, mxm, then AB = I if and only if BA = I As a result, to prove that a matrix is invertible, all we need to prove is one the following: Either AB = I or BA = I If a matrix A is invertible, then it follows that: AX = B X = A -1 B XA = B X = B A -1

A final note… Let A, B with AB = O It may well be the case that neither of these matrices is a null one. However, if the above holds and one of the two is invertible, then the other is a null one

Determinants The determinant of a square matrix A, denoted by |A| is a uniquely defined scalar associated with that matrix. Defined only for square matrices. For a 2×2 matrix The determinant is equal to:

Determinants Evaluating a third order determinant Its determinant has the value

Solving a nxn linear system using Cramers method Let the nxn linear system AX = B If |A| 0, then the system has only one solution (x 1, x 2,…, x n ) with X 1 = Dx 1 /D,x 2 = Dx 2 /D, …,x n = Dx n /D Where D is the determinant |A| of the unknown variablescoefficients and Dx i, i = 1,2,3, … n is the determinant resulting from substituting the ith column of the X i coefficients with the constants column. If |A| = 0, then the system either has no solutions or has infinite solutions