Пифагор (580-500 г.г. До н. э.) Евдокс (408-355 г.г. До н. э.) Леонардо да Винчи (1452-1519 г.г.) Пропорции, т. е. равенства отношений изучались пифагорейцами.

Презентация:



Advertisements
Похожие презентации
Новицкая Янина. Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание,
Advertisements

Пересечение двух пересекающихся прямых Пересечение двух пересекающихся прямых Пересечение прямой и плоскости а) параллельное проецирование а) параллельное.
a : b = b : c= 1,6 a : b = b : c = 1,6 «З ОЛОТАЯ П РОПОРЦИЯ » - ГЛАВНЫЙ ЭСТЕТИЧЕСКИЙ ПРИНЦИП ЭПОХИ С РЕДНЕВЕКОВЬЯ Эпоха Возрождения ассоциируется с именами.
Изучить понятие «золотое сечение»; Рассмотреть применение «золотого сечения» в архитектуре, искусстве, биологии; Исследовать присутствие золотого сечения.
Золотое сечение. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части,
Выполнила : Гущеня Светлана Анатольевна. 2 Содержание Принцип золотого сечения Принцип золотого сечения Принцип золотого сечения Принцип золотого сечения.
«Золотое сечение». Пропорции, т.е. равенства отношений изучались пифагорейцами. Евдокс развил учение о пропорциях–одно из величайших достижений греческой.
Муниципальное бюджетное образовательное учреждение средняя общеобразовательная школа с.Каркаусь Кукморского муниципального района РТ Учительница математики.
Пропорции в природе, искусстве и архитектуре Пропорции в природе, искусстве и архитектуре.
Золотое сечение - пропорциональное деление отрезка на неравные части. При котором длина всего отрезка так относится к его большей части, как длина большей.
Введение "С точки зрения Платона, да и вообще с точки зрения всей античной космологии мир представляет собой некое пропорциональное целое, подчиняющееся.
Проект на тему : Удивительное рядом. Золотое сечение. Проект подготовили : Абрамова Ксения и Керобян Мелине. Педагог : Толпегин Дмитрий Сергеевич.
Человек различает окружающие его предметы по форме. Интерес к форме какого - либо предмета может быть продиктован жизненной необходимостью, а может быть.
Золотое сечение Урок математики, 6 класс Тема «Отношения и пропорции»
«Симметрия, как бы широко или узко мы не понимали это слово, есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство".
ЗОЛОТОЕ СЕЧЕНИЕ В АРХИТЕКТУРЕ. ИЗ ТОЧКИ В ВОССТАВЛЯЕТСЯ ПЕРПЕНДИКУЛЯР, РАВНЫЙ ПОЛОВИНЕ АВ. ПОЛУЧЕННАЯ ТОЧКА С СОЕДИНЯЕТСЯ ЛИНИЕЙ С ТОЧКОЙ А. НА ПОЛУЧЕННОЙ.
Работу выполнила: Лохматова Н. 21 ПЗ. В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как.
К примеру, в правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении (т. е. отношение синего отрезка к зелёному,
Презентация по теме: «Золотое сечение» Тамели Максима.
Урок математики 6 А класс тема "Пропорция". «Была бы охота – заладится всякая работа».
Транксрипт:

Пифагор ( г.г. До н. э.) Евдокс ( г.г. До н. э.) Леонардо да Винчи ( г.г.) Пропорции, т. е. равенства отношений изучались пифагорейцами. Евдокс развил учение о пропорциях-одно из величайших достижений греческой математики. Термин «золотое сечение» ввёл Леонардо да Винчи.

Определение золотого сечения:целое относится к его большей части так же, как большая часть относится к меньшей части. Отрезок АВ так относится к его большей части AG, как эта большая часть AG относится к его меньшей части GB. Иначе говоря, точка G делит отрезок АВ в «золотой пропорции». Для того, чтобы разделить отрезок АВ в "золотом" отношении, достаточно выполнить следующие построения с помощью циркуля и линейки: 1. Из точки В восстанавливается перпендикуляр, равный половине АВ. 2. Полученная точка С соединяется линией с точкой А. 3. На полученной прямой от точки С откладывается отрезок CD, равный ВС. 4. На прямой AB откладывается отрезок AE=AD. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Есть предположение, что Пифагор понятие золотого сечения позаимствовал у египтян и вавилонян. И, действительно пропорции пирамиды Хеопса, барельефы предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношением золотого сечения при их создании. Сфинкс Пирамида Хеопса

Исследуя композиционную структуру картин - шедевров мирового изобразительного искусства, искусствоведы обратили внимание на тот факт, что в пейзажных картинах широко используется закон золотого сечения. Примером такой картины является картина И.И. Шишкина "Корабельная роща". На этой знаменитой картине с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит картину золотым сечением по горизонтали. Справа от сосны - освещенный солнцем пригорок. Он делит картину золотым сечением по вертикали. Слева от главной сосны находится много сосен - при желании можно с успехом продолжить деление золотым сечением по горизонтали левой части картины. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия в соответствии с замыслом художника. Тот же принцип мы видим в картине И.Е. Репина "А.С. Пушкин на акте в Лицее 8 января 1815 года".

В биологических исследованиях гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем. Можно отметить два вида проявлений золотого сечения в живой природе: иррациональные отношения по Пифагору и целочисленные, дискретные - по Фибоначчи. Приглядимся внимательно к побегу цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.

Спирали широко проявляют себя в живой природе. Спирально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения (нутации) наблюдаются при росте корней и побегов

Раифсий мужской монастырь- единственный в Татарии сохранившийся монастырский комплекс, построенный в 17 веке. Комплекс имеет форму пятиугольника. Пентагон в США. Комплекс имеет форму правильного пятиугольника, сотканного из золотых пропорций.

The End