Пифагор ( г.г. До н. э.) Евдокс ( г.г. До н. э.) Леонардо да Винчи ( г.г.) Пропорции, т. е. равенства отношений изучались пифагорейцами. Евдокс развил учение о пропорциях-одно из величайших достижений греческой математики. Термин «золотое сечение» ввёл Леонардо да Винчи.
Определение золотого сечения:целое относится к его большей части так же, как большая часть относится к меньшей части. Отрезок АВ так относится к его большей части AG, как эта большая часть AG относится к его меньшей части GB. Иначе говоря, точка G делит отрезок АВ в «золотой пропорции». Для того, чтобы разделить отрезок АВ в "золотом" отношении, достаточно выполнить следующие построения с помощью циркуля и линейки: 1. Из точки В восстанавливается перпендикуляр, равный половине АВ. 2. Полученная точка С соединяется линией с точкой А. 3. На полученной прямой от точки С откладывается отрезок CD, равный ВС. 4. На прямой AB откладывается отрезок AE=AD. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Есть предположение, что Пифагор понятие золотого сечения позаимствовал у египтян и вавилонян. И, действительно пропорции пирамиды Хеопса, барельефы предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношением золотого сечения при их создании. Сфинкс Пирамида Хеопса
Исследуя композиционную структуру картин - шедевров мирового изобразительного искусства, искусствоведы обратили внимание на тот факт, что в пейзажных картинах широко используется закон золотого сечения. Примером такой картины является картина И.И. Шишкина "Корабельная роща". На этой знаменитой картине с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит картину золотым сечением по горизонтали. Справа от сосны - освещенный солнцем пригорок. Он делит картину золотым сечением по вертикали. Слева от главной сосны находится много сосен - при желании можно с успехом продолжить деление золотым сечением по горизонтали левой части картины. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия в соответствии с замыслом художника. Тот же принцип мы видим в картине И.Е. Репина "А.С. Пушкин на акте в Лицее 8 января 1815 года".
В биологических исследованиях гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем. Можно отметить два вида проявлений золотого сечения в живой природе: иррациональные отношения по Пифагору и целочисленные, дискретные - по Фибоначчи. Приглядимся внимательно к побегу цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.
Спирали широко проявляют себя в живой природе. Спирально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения (нутации) наблюдаются при росте корней и побегов
Раифсий мужской монастырь- единственный в Татарии сохранившийся монастырский комплекс, построенный в 17 веке. Комплекс имеет форму пятиугольника. Пентагон в США. Комплекс имеет форму правильного пятиугольника, сотканного из золотых пропорций.
The End