Автоколивання Підготував учень 10-Б Колесник Михайло.

Презентация:



Advertisements
Похожие презентации
МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ. Запиши ответы на вопросы в тетрадь Что такое механические колебания? Какие колебания называются гармоническими? Уравнение гармонических.
Advertisements

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 16 ЩМР МО Презентация выполнена учителем физики Галяминой Т. А.
Автоколебания. Автоколеба́ния незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии.
Тема 7 колебания. Гармонические колебания осцилляторы.
М ЕХАНИЧЕСКИЕ КОЛЕБАНИЯ. Колебания - один из самых распространенных процессов в природе и технике Механические колебания – это движения, которые точно.
Малые колебания Лекция 7 Осень 2009.
Автоколебания. Условия возбуждения автоколебаний а) энергия от источника должна поступать в такт с колебаниями в контуре; б) поступающая от источника.
Механические колебания Лекцию подготовил Волчков С. Н.
Колебания и волны. Геометрическая и волновая оптика Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУ пятница, 6 декабря 2013 г.
«КОЛЕБАНИЯ» Электромагнитные колебания Гармонические электромагнитные колебания Затухающие электромагнитные колебания Резонанс в различных контурах. Метод.
Автоколебательные системы. Предельные множества: аттракторы, репеллеры и седла По энергетическому признаку динамические системы делятся на консервативные.
Выполнила : ученица 11 класса « А » Олейникова Юлия.
Колебания Выполнила: Васильева Елена Ученица 10 «А» класса.
М ЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Подготовила: ученица 10 класса А Акимова М.А. Проверила: учитель физики Брызгалова О.С.
Колебания и волны. Геометрическая и волновая оптика Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУпонедельник, 16 декабря 2013 г.
Графики гармонических колебаний. Колебаниями называются движения или процессы, обладающие той или иной повторяемостью во времени. Примеры колебаний: колебание.
ПРОЕКТ Теория малых колебаний Руководитель проекта: К.К.Асратян Выполнила: ученица 11 Б класса Приказчикова Мария.
МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Проект выполнили учащиеся 11 «А» класса МОУ «Гимназия 4»: Круглякова Екатерина Круглякова Екатерина Швачкина Марина Швачкина Марина.
Механические колебания 11 класс. Механические колебания – это движения, которые точно или приблизительно повторяются через определенные интервалы времени.
ТЕМА: 02. Колебательное движение План урока.. План урока. Колебательным движением (колебанием) называют всякий процесс, который обладает свойством повторяемости.
Транксрипт:

Автоколивання Підготував очень 10-Б Колесник Михайло

Автоколебания могут иметь различную природу: механическую, тепловую, электромагнитную, химическую. Механизм возникновения и поддержания автоколебаний в разных системах может основываться на разных законах физики или химии. Для точного количественного описания автоколебаний разных систем может потребоваться разный математический аппарат. Тем не менее, можно представить схему, общую для всех автоколебательных систем, Автоколебания могут иметь различную природу: механическую, тепловую, электромагнитную, химическую. Механизм возникновения и поддержания автоколебаний в разных системах может основываться на разных законах физики или химии. Для точного количественного описания автоколебаний разных систем может потребоваться разный математический аппарат. Тем не менее, можно представить схему, общую для всех автоколебательных систем, качественно описывающую этот механизм качественно описывающую этот механизм (рис. 1). На схеме: S источник постоянного (рис. 1). На схеме: S источник постоянного (непериодического) воздействия; R нелинейный регулятор, преобразующий постоянное воздействие в переменное (например, в прерывистое во времени), которое и «раскачивает» осциллятор V колеблющийся элемент (элементы) системы, а колебания осциллятора через обратную связь B управляют работой регулятора R, задавая фазу и частоту его действия. Диссипация (рассеивание энергии) в автоколебательной системе восстанавливается за счёт поступления в неё энергии из источника постоянного воздействия, благодаря чему автоколебания не затухают. (непериодического) воздействия; R нелинейный регулятор, преобразующий постоянное воздействие в переменное (например, в прерывистое во времени), которое и «раскачивает» осциллятор V колеблющийся элемент (элементы) системы, а колебания осциллятора через обратную связь B управляют работой регулятора R, задавая фазу и частоту его действия. Диссипация (рассеивание энергии) в автоколебательной системе восстанавливается за счёт поступления в неё энергии из источника постоянного воздействия, благодаря чему автоколебания не затухают.

Рис. 2 Схема храпового механизма маятниковых часов. Если колеблющийся элемент системы способен к собственным затухающим колебаниям (т.н. гармонический диссипативный осциллятор), автоколебания (при равенстве диссипации и поступления энергии в систему за время периода) устанавливаются на частоте, близкой к резонансной для этого осциллятора, их форма становится близкой к гармонической, а амплитуда, в некотором диапазоне значений, тем больше, чем больше величина постоянного внешнего воздействия. Примером такого рода системы может служить храповой механизм маятниковых часов, схема которого представлена на рис. 2. На ось храпового колеса A(которое в этой системе выполняет функцию нелинейного регулятора) действует постоянный момент силы M, передающийся через зубчатую передачу от заводной пружины или от гири. При вращении колеса A его зубцы сообщают кратковременные импульс силы маятнику P (осциллятору), благодаря которым его колебания не затухают. Кинематика механизма играет роль обратной связи в системе, синхронизируя вращение колеса с колебаниями маятника таким образом, что за полный период колебания колесо поворачивается на угол, соответствующий одному зубцу. Автоколебательные системы, не содержащие гармонических осцилляторов, называются релаксационными. Колебания в них могут сильно отличаться от гармонических, и иметь прямоугольную, треугольную или трапецеидальную форму. Амплитуда и период релаксационных автоколебаний определяются соотношением величины постоянного воздействия и характеристик инерционности и диссипации системы.